{"title":"利用抗体诱导封顶和双间接免疫荧光显微镜研究体内CD4:p56lck关联。","authors":"M Gassmann, K E Amrein, P Burn","doi":"10.3109/10799899309073688","DOIUrl":null,"url":null,"abstract":"<p><p>Accumulating data suggest that the T-cell surface antigen CD4 transduces an independent signal during antigen-mediated T-cell activation. In vitro studies which showed that the cytoplasmic protein tyrosine kinase p56lck is present in anti-CD4 immunoprecipitates led to the model that p56lck is associated with the cytoplasmic domain of CD4. In this report we have extended these studies and examined potential CD4:p56lck associations in vivo. We show here by double immunofluorescence microscopy a specific co-distribution of p56lck with antibody-induced CD4 caps in intact cells. Murine T-cell hybridoma lines expressing mutant forms of CD4 were used to demonstrate that the 31 carboxyterminal aminoacids of its cytoplasmic domain, in particular cysteine-420 and cysteine-422, are crucial for the formation of CD4:p56lck complexes in vivo. The potential of the method applied is discussed with regard to studies of other transmembrane signalling systems involving src-like kinases.</p>","PeriodicalId":16948,"journal":{"name":"Journal of receptor research","volume":"13 1-4","pages":"711-24"},"PeriodicalIF":0.0000,"publicationDate":"1993-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10799899309073688","citationCount":"11","resultStr":"{\"title\":\"CD4:p56lck association studied in vivo using antibody-induced capping and double indirect immunofluorescence microscopy.\",\"authors\":\"M Gassmann, K E Amrein, P Burn\",\"doi\":\"10.3109/10799899309073688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accumulating data suggest that the T-cell surface antigen CD4 transduces an independent signal during antigen-mediated T-cell activation. In vitro studies which showed that the cytoplasmic protein tyrosine kinase p56lck is present in anti-CD4 immunoprecipitates led to the model that p56lck is associated with the cytoplasmic domain of CD4. In this report we have extended these studies and examined potential CD4:p56lck associations in vivo. We show here by double immunofluorescence microscopy a specific co-distribution of p56lck with antibody-induced CD4 caps in intact cells. Murine T-cell hybridoma lines expressing mutant forms of CD4 were used to demonstrate that the 31 carboxyterminal aminoacids of its cytoplasmic domain, in particular cysteine-420 and cysteine-422, are crucial for the formation of CD4:p56lck complexes in vivo. The potential of the method applied is discussed with regard to studies of other transmembrane signalling systems involving src-like kinases.</p>\",\"PeriodicalId\":16948,\"journal\":{\"name\":\"Journal of receptor research\",\"volume\":\"13 1-4\",\"pages\":\"711-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/10799899309073688\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of receptor research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/10799899309073688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of receptor research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10799899309073688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CD4:p56lck association studied in vivo using antibody-induced capping and double indirect immunofluorescence microscopy.
Accumulating data suggest that the T-cell surface antigen CD4 transduces an independent signal during antigen-mediated T-cell activation. In vitro studies which showed that the cytoplasmic protein tyrosine kinase p56lck is present in anti-CD4 immunoprecipitates led to the model that p56lck is associated with the cytoplasmic domain of CD4. In this report we have extended these studies and examined potential CD4:p56lck associations in vivo. We show here by double immunofluorescence microscopy a specific co-distribution of p56lck with antibody-induced CD4 caps in intact cells. Murine T-cell hybridoma lines expressing mutant forms of CD4 were used to demonstrate that the 31 carboxyterminal aminoacids of its cytoplasmic domain, in particular cysteine-420 and cysteine-422, are crucial for the formation of CD4:p56lck complexes in vivo. The potential of the method applied is discussed with regard to studies of other transmembrane signalling systems involving src-like kinases.