{"title":"骨骼肌氧化能力和抗疲劳能力的变化","authors":"H. Degens, J.H. Veerkamp","doi":"10.1016/0020-711X(94)90079-5","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":13733,"journal":{"name":"International Journal of Biochemistry","volume":"26 7","pages":"Pages 871-878"},"PeriodicalIF":0.0000,"publicationDate":"1994-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0020-711X(94)90079-5","citationCount":"61","resultStr":"{\"title\":\"Changes in oxidative capacity and fatigue resistance in skeletal muscle\",\"authors\":\"H. Degens, J.H. Veerkamp\",\"doi\":\"10.1016/0020-711X(94)90079-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":13733,\"journal\":{\"name\":\"International Journal of Biochemistry\",\"volume\":\"26 7\",\"pages\":\"Pages 871-878\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0020-711X(94)90079-5\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0020711X94900795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0020711X94900795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61
摘要
总之,一般来说,肌肉抗疲劳能力的增强是伴随着其氧化能力的增强。肌肉的抗疲劳能力似乎部分取决于它的氧化能力。关于单个电机单元(Burke et al ., 1973;Hamm et al, 1988;Kugelberg and Lindegren 1979;Larsson等人,1991)和单纤维水平(Nemeth等人,1981),抗疲劳能力和氧化能力之间的关系似乎是有效的。然而,这似乎并不一定是整个肌肉水平的情况。Kugelberg和Lindegren(1979)认为,在有氧条件下,导致收缩的事件链中每个环节的耐力与纤维的氧化酶活性表达的收缩能力相匹配。因此,可能有几个耐力测试比肌肉的有氧能力更费力。事实上,一些研究表明,Burke测试(Burke et al, 1973)或其他疲劳协议可能主要测试其他与耐力相关的特性,如激发-收缩耦合(Kernell et al, 1987;Mayne et al ., 1991b)。氧化能力和抗疲劳能力变化差异的另一种解释可能是,正如Gardiner和Olha(1987)所发现的那样,在疲劳测试中,运动单元(具有不同的生化和收缩特性)的机械反应在整个肌肉收缩过程中并没有线性相加。(摘要删节250字)