白细胞介素-1受体拮抗剂及其基因传递。

Receptor Pub Date : 1994-01-01
C H Evans, P D Robbins
{"title":"白细胞介素-1受体拮抗剂及其基因传递。","authors":"C H Evans,&nbsp;P D Robbins","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The interleukin-1 receptor antagonist (IL-1ra or IRAP) is a small, acidic glycoprotein that competitively inhibits the biological activities of interleukin-1 (IL-1). Alternative splicing gives rise to secreted and intracellular forms of IL-1ra. Both forms block cellular responses to IL-1 by occupying IL-1 receptors without triggering an agonist response. The affinity of IL-1ra for the type I IL-1 receptor is approximately that of IL-1. However, because of IL-1's pronounced \"spare receptor\" effect, IL-1ra is a weak inhibitor of biological responses to IL-1. The value for the affinity constant of IL-1ra's binding to the type II IL-1 receptor has been the subject of disagreement. However, recent data suggest that human IL-1ra has only weak affinity for the human type II receptor. This is consistent with the likelihood that the type II receptor plays no role in signal transduction, instead being a \"decoy\" that can be shed as a soluble receptor with the ability bind, and thus inhibit, IL-1. Under the name Antril, IL-1ra is being tested in clinical trials of a number of human diseases where IL-1 plays a major pathophysiologic role. These diseases include sepsis, rheumatoid arthritis, chronic myelogenous leukemia, and asthma, among others. Although IL-1ra has clear pharmacologic potential in such conditions, its application in chronic diseases is limited by difficulties associated with delivering proteins as drugs. As an alternative, we have suggested transfer of the gene coding for IL-1ra; strategies for both local and systemic gene delivery are being developed.(ABSTRACT TRUNCATED AT 250 WORDS)</p>","PeriodicalId":21112,"journal":{"name":"Receptor","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The interleukin-1 receptor antagonist and its delivery by gene transfer.\",\"authors\":\"C H Evans,&nbsp;P D Robbins\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The interleukin-1 receptor antagonist (IL-1ra or IRAP) is a small, acidic glycoprotein that competitively inhibits the biological activities of interleukin-1 (IL-1). Alternative splicing gives rise to secreted and intracellular forms of IL-1ra. Both forms block cellular responses to IL-1 by occupying IL-1 receptors without triggering an agonist response. The affinity of IL-1ra for the type I IL-1 receptor is approximately that of IL-1. However, because of IL-1's pronounced \\\"spare receptor\\\" effect, IL-1ra is a weak inhibitor of biological responses to IL-1. The value for the affinity constant of IL-1ra's binding to the type II IL-1 receptor has been the subject of disagreement. However, recent data suggest that human IL-1ra has only weak affinity for the human type II receptor. This is consistent with the likelihood that the type II receptor plays no role in signal transduction, instead being a \\\"decoy\\\" that can be shed as a soluble receptor with the ability bind, and thus inhibit, IL-1. Under the name Antril, IL-1ra is being tested in clinical trials of a number of human diseases where IL-1 plays a major pathophysiologic role. These diseases include sepsis, rheumatoid arthritis, chronic myelogenous leukemia, and asthma, among others. Although IL-1ra has clear pharmacologic potential in such conditions, its application in chronic diseases is limited by difficulties associated with delivering proteins as drugs. As an alternative, we have suggested transfer of the gene coding for IL-1ra; strategies for both local and systemic gene delivery are being developed.(ABSTRACT TRUNCATED AT 250 WORDS)</p>\",\"PeriodicalId\":21112,\"journal\":{\"name\":\"Receptor\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Receptor\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Receptor","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

白细胞介素-1受体拮抗剂(IL-1ra或IRAP)是一种小的酸性糖蛋白,竞争性地抑制白细胞介素-1 (IL-1)的生物活性。选择性剪接产生分泌和细胞内形式的IL-1ra。这两种形式通过占据IL-1受体而不触发激动剂反应来阻断细胞对IL-1的反应。IL-1ra对I型IL-1受体的亲和力近似于IL-1。然而,由于IL-1明显的“备用受体”效应,IL-1ra是对IL-1的生物反应的弱抑制剂。IL-1ra与II型IL-1受体结合的亲和力常数的值一直是分歧的主题。然而,最近的数据表明,人IL-1ra对人II型受体只有弱亲和力。这与II型受体在信号转导中不发挥作用的可能性是一致的,相反,II型受体是一个“诱饵”,可以作为具有结合能力的可溶性受体脱落,从而抑制IL-1。在Antril的名称下,IL-1ra正在许多人类疾病的临床试验中进行测试,其中IL-1起主要的病理生理作用。这些疾病包括败血症、类风湿性关节炎、慢性骨髓性白血病和哮喘等。尽管IL-1ra在这些疾病中具有明确的药理学潜力,但其在慢性疾病中的应用受到蛋白质作为药物递送困难的限制。作为一种替代方法,我们建议转移编码IL-1ra的基因;局部和系统基因传递的策略正在开发中。(摘要删节250字)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The interleukin-1 receptor antagonist and its delivery by gene transfer.

The interleukin-1 receptor antagonist (IL-1ra or IRAP) is a small, acidic glycoprotein that competitively inhibits the biological activities of interleukin-1 (IL-1). Alternative splicing gives rise to secreted and intracellular forms of IL-1ra. Both forms block cellular responses to IL-1 by occupying IL-1 receptors without triggering an agonist response. The affinity of IL-1ra for the type I IL-1 receptor is approximately that of IL-1. However, because of IL-1's pronounced "spare receptor" effect, IL-1ra is a weak inhibitor of biological responses to IL-1. The value for the affinity constant of IL-1ra's binding to the type II IL-1 receptor has been the subject of disagreement. However, recent data suggest that human IL-1ra has only weak affinity for the human type II receptor. This is consistent with the likelihood that the type II receptor plays no role in signal transduction, instead being a "decoy" that can be shed as a soluble receptor with the ability bind, and thus inhibit, IL-1. Under the name Antril, IL-1ra is being tested in clinical trials of a number of human diseases where IL-1 plays a major pathophysiologic role. These diseases include sepsis, rheumatoid arthritis, chronic myelogenous leukemia, and asthma, among others. Although IL-1ra has clear pharmacologic potential in such conditions, its application in chronic diseases is limited by difficulties associated with delivering proteins as drugs. As an alternative, we have suggested transfer of the gene coding for IL-1ra; strategies for both local and systemic gene delivery are being developed.(ABSTRACT TRUNCATED AT 250 WORDS)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信