{"title":"巯基试剂n -乙基马来酰亚胺对阿片受体亚型化学分化的证据。","authors":"L Tam, M F Rafferty","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the delta receptor-selective nonequilibrium affinity ligands, 5'-NTII and DALCE, and the nonspecific sulfhydryl reagent NEM were evaluated over a range of concentrations and treatment conditions for their ability to selectively alter the binding properties of delta 1- or delta 2-preferring opioid radioligands in brain homogenate. Treatment of tissue preparations with DALCE (0-10,000 nM) or NTII (0-10,000 nM) resulted in an equivalent concentration-dependent loss of binding capacity for the delta 1 agonist 3H-DPDPE and the mu/delta 2 agonist 3H-DSLET. In contrast, treatment of tissue with NEM (0-8000 microM) resulted in greater loss of 3H-DPDPE binding. Scatchard analysis of the binding of 3H-DPDPE, 3H-DSLET, and 3H-NTI in 3 mM NEM-treated rat brain P2 preparation revealed an equivalent decrease in affinity for the agonist ligands, but a significantly greater decrease in Bmax for 3H-DPDPE compared with control tissue values. Comparison of the K(i) values for a series of delta-selective compounds against 3H-DSLET binding in control vs 3 mM NEM treated P2 fraction showed differential effects of NEM on affinity within the series that were consistent with a selective depletion of delta 1 sites. Overall, these results indicate that NEM treatment selectively reduced delta 1 receptor binding, resulting in a preparation that is enriched in delta 2 sites.</p>","PeriodicalId":21112,"journal":{"name":"Receptor","volume":"4 2","pages":"81-91"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence for chemical differentiation of delta opioid receptor subtypes by the sulfhydryl reagent N-ethylmaleimide.\",\"authors\":\"L Tam, M F Rafferty\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, the delta receptor-selective nonequilibrium affinity ligands, 5'-NTII and DALCE, and the nonspecific sulfhydryl reagent NEM were evaluated over a range of concentrations and treatment conditions for their ability to selectively alter the binding properties of delta 1- or delta 2-preferring opioid radioligands in brain homogenate. Treatment of tissue preparations with DALCE (0-10,000 nM) or NTII (0-10,000 nM) resulted in an equivalent concentration-dependent loss of binding capacity for the delta 1 agonist 3H-DPDPE and the mu/delta 2 agonist 3H-DSLET. In contrast, treatment of tissue with NEM (0-8000 microM) resulted in greater loss of 3H-DPDPE binding. Scatchard analysis of the binding of 3H-DPDPE, 3H-DSLET, and 3H-NTI in 3 mM NEM-treated rat brain P2 preparation revealed an equivalent decrease in affinity for the agonist ligands, but a significantly greater decrease in Bmax for 3H-DPDPE compared with control tissue values. Comparison of the K(i) values for a series of delta-selective compounds against 3H-DSLET binding in control vs 3 mM NEM treated P2 fraction showed differential effects of NEM on affinity within the series that were consistent with a selective depletion of delta 1 sites. Overall, these results indicate that NEM treatment selectively reduced delta 1 receptor binding, resulting in a preparation that is enriched in delta 2 sites.</p>\",\"PeriodicalId\":21112,\"journal\":{\"name\":\"Receptor\",\"volume\":\"4 2\",\"pages\":\"81-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Receptor\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Receptor","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evidence for chemical differentiation of delta opioid receptor subtypes by the sulfhydryl reagent N-ethylmaleimide.
In this study, the delta receptor-selective nonequilibrium affinity ligands, 5'-NTII and DALCE, and the nonspecific sulfhydryl reagent NEM were evaluated over a range of concentrations and treatment conditions for their ability to selectively alter the binding properties of delta 1- or delta 2-preferring opioid radioligands in brain homogenate. Treatment of tissue preparations with DALCE (0-10,000 nM) or NTII (0-10,000 nM) resulted in an equivalent concentration-dependent loss of binding capacity for the delta 1 agonist 3H-DPDPE and the mu/delta 2 agonist 3H-DSLET. In contrast, treatment of tissue with NEM (0-8000 microM) resulted in greater loss of 3H-DPDPE binding. Scatchard analysis of the binding of 3H-DPDPE, 3H-DSLET, and 3H-NTI in 3 mM NEM-treated rat brain P2 preparation revealed an equivalent decrease in affinity for the agonist ligands, but a significantly greater decrease in Bmax for 3H-DPDPE compared with control tissue values. Comparison of the K(i) values for a series of delta-selective compounds against 3H-DSLET binding in control vs 3 mM NEM treated P2 fraction showed differential effects of NEM on affinity within the series that were consistent with a selective depletion of delta 1 sites. Overall, these results indicate that NEM treatment selectively reduced delta 1 receptor binding, resulting in a preparation that is enriched in delta 2 sites.