Chiara Mondello , Roberta Riboni , Magdy Rady , Elena Giulotto , Fiorella Nuzzo
{"title":"中国仓鼠DNA修复缺陷突变体的基因扩增","authors":"Chiara Mondello , Roberta Riboni , Magdy Rady , Elena Giulotto , Fiorella Nuzzo","doi":"10.1016/0165-7992(95)90052-7","DOIUrl":null,"url":null,"abstract":"<div><p>In order to study the possible relationship between gene amplification and DNA repair we analyzed the amplification of the CAD gene in four mutants hypersensitive to UV light (CHO43RO, CHO7PV, UV5 and UV61) isolated in vitro from Chinese hamster cell lines (CHO-K1 and AA8). These mutants are characterized by different defects in the nucleotide excision repair mechanism and represent complementation groups 1, 9, 2, and 6 respectively. To evaluate the amplification ability of each cell line we measured the rate of appearance of PALA resistant clones with the Luria and Delbrück fluctuation test. Resistance to PALA is mainly due to amplification of the CAD gene. In the mutants CHO43RO, UV5 and CHO7PV we reproducibly found an amplification rate lower than in the parental cell lines (2–5 times), while in UV61 the amplification rate was about 4 times higher. This result indicates that each mutant is characterized by a specific amplification ability and that the unefficient removal of UV induced DNA damage can be associated with either a higher or a lower amplification rate. However, the analysis of randomly isolated CHO-K1 clones with normal UV sensitivity has shown variability in their amplification ability, making it difficult to relate the specific amplification ability of the mutants to the DNA repair defect and suggesting clonal heterogeneity of the parental population.</p></div>","PeriodicalId":100934,"journal":{"name":"Mutation Research Letters","volume":"346 2","pages":"Pages 61-67"},"PeriodicalIF":0.0000,"publicationDate":"1995-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0165-7992(95)90052-7","citationCount":"8","resultStr":"{\"title\":\"Gene amplification in Chinese hamster DNA repair deficient mutants\",\"authors\":\"Chiara Mondello , Roberta Riboni , Magdy Rady , Elena Giulotto , Fiorella Nuzzo\",\"doi\":\"10.1016/0165-7992(95)90052-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to study the possible relationship between gene amplification and DNA repair we analyzed the amplification of the CAD gene in four mutants hypersensitive to UV light (CHO43RO, CHO7PV, UV5 and UV61) isolated in vitro from Chinese hamster cell lines (CHO-K1 and AA8). These mutants are characterized by different defects in the nucleotide excision repair mechanism and represent complementation groups 1, 9, 2, and 6 respectively. To evaluate the amplification ability of each cell line we measured the rate of appearance of PALA resistant clones with the Luria and Delbrück fluctuation test. Resistance to PALA is mainly due to amplification of the CAD gene. In the mutants CHO43RO, UV5 and CHO7PV we reproducibly found an amplification rate lower than in the parental cell lines (2–5 times), while in UV61 the amplification rate was about 4 times higher. This result indicates that each mutant is characterized by a specific amplification ability and that the unefficient removal of UV induced DNA damage can be associated with either a higher or a lower amplification rate. However, the analysis of randomly isolated CHO-K1 clones with normal UV sensitivity has shown variability in their amplification ability, making it difficult to relate the specific amplification ability of the mutants to the DNA repair defect and suggesting clonal heterogeneity of the parental population.</p></div>\",\"PeriodicalId\":100934,\"journal\":{\"name\":\"Mutation Research Letters\",\"volume\":\"346 2\",\"pages\":\"Pages 61-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0165-7992(95)90052-7\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0165799295900527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0165799295900527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gene amplification in Chinese hamster DNA repair deficient mutants
In order to study the possible relationship between gene amplification and DNA repair we analyzed the amplification of the CAD gene in four mutants hypersensitive to UV light (CHO43RO, CHO7PV, UV5 and UV61) isolated in vitro from Chinese hamster cell lines (CHO-K1 and AA8). These mutants are characterized by different defects in the nucleotide excision repair mechanism and represent complementation groups 1, 9, 2, and 6 respectively. To evaluate the amplification ability of each cell line we measured the rate of appearance of PALA resistant clones with the Luria and Delbrück fluctuation test. Resistance to PALA is mainly due to amplification of the CAD gene. In the mutants CHO43RO, UV5 and CHO7PV we reproducibly found an amplification rate lower than in the parental cell lines (2–5 times), while in UV61 the amplification rate was about 4 times higher. This result indicates that each mutant is characterized by a specific amplification ability and that the unefficient removal of UV induced DNA damage can be associated with either a higher or a lower amplification rate. However, the analysis of randomly isolated CHO-K1 clones with normal UV sensitivity has shown variability in their amplification ability, making it difficult to relate the specific amplification ability of the mutants to the DNA repair defect and suggesting clonal heterogeneity of the parental population.