{"title":"己糖激酶在缺血和再灌注仔猪脑中的结合","authors":"Gray S.M., Adams V., Yamashita Y., Le S.P., Goddardfinegold J., Mccabe E.R.B.","doi":"10.1006/bmmb.1994.1070","DOIUrl":null,"url":null,"abstract":"<div><p>Hexokinase catalyzes the first step in cerebral glucose utilization and is a rate-limiting enzyme in glycolysis. Glucose utilization is tightly coupled to cerebral blood flow so that during ischemia the brain has a decreased supply of glucose, as well as oxygen. We studied hexokinase enzymatic activity in a newborn piglet model of ischemia-reperfusion to determine if any changes in the activity or mitochondrial binding of the enzyme occurred. We observed that mitochondrial binding of cortical HK increased from 55 to 71% with ischemia and returned toward control levels, but did not completely recover, after 2 h of reperfusion.</p></div>","PeriodicalId":8752,"journal":{"name":"Biochemical medicine and metabolic biology","volume":"53 2","pages":"Pages 145-148"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/bmmb.1994.1070","citationCount":"9","resultStr":"{\"title\":\"Hexokinase Binding in Ischemic and Reperfused Piglet Brain\",\"authors\":\"Gray S.M., Adams V., Yamashita Y., Le S.P., Goddardfinegold J., Mccabe E.R.B.\",\"doi\":\"10.1006/bmmb.1994.1070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hexokinase catalyzes the first step in cerebral glucose utilization and is a rate-limiting enzyme in glycolysis. Glucose utilization is tightly coupled to cerebral blood flow so that during ischemia the brain has a decreased supply of glucose, as well as oxygen. We studied hexokinase enzymatic activity in a newborn piglet model of ischemia-reperfusion to determine if any changes in the activity or mitochondrial binding of the enzyme occurred. We observed that mitochondrial binding of cortical HK increased from 55 to 71% with ischemia and returned toward control levels, but did not completely recover, after 2 h of reperfusion.</p></div>\",\"PeriodicalId\":8752,\"journal\":{\"name\":\"Biochemical medicine and metabolic biology\",\"volume\":\"53 2\",\"pages\":\"Pages 145-148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/bmmb.1994.1070\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical medicine and metabolic biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S088545058471070X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical medicine and metabolic biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088545058471070X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hexokinase Binding in Ischemic and Reperfused Piglet Brain
Hexokinase catalyzes the first step in cerebral glucose utilization and is a rate-limiting enzyme in glycolysis. Glucose utilization is tightly coupled to cerebral blood flow so that during ischemia the brain has a decreased supply of glucose, as well as oxygen. We studied hexokinase enzymatic activity in a newborn piglet model of ischemia-reperfusion to determine if any changes in the activity or mitochondrial binding of the enzyme occurred. We observed that mitochondrial binding of cortical HK increased from 55 to 71% with ischemia and returned toward control levels, but did not completely recover, after 2 h of reperfusion.