{"title":"在有丝分裂和丝裂霉素c诱导的有丝分裂后人皮肤成纤维细胞的低血清培养中,阿霉素抑制紫外线诱导的嘧啶光二聚体的切除修复","authors":"Hugo J. Niggli","doi":"10.1016/0921-8734(93)90014-T","DOIUrl":null,"url":null,"abstract":"<div><p>The rates of formation and excision of UVC light-induced cyclobutane-type pyrimidine photodimers were determined in cultures of foreskin-derived normal human fibroblasts in mitotic (MF) and mitomycin-C (MMC)-induced postmitotic fibroblasts (PMF). Characteristic morphological changes support the notion that MMC accelerates the differentiation pathway from MF to PMF. In cultures treated with aphidicolin, I am able to show that this inhibitor of α and/or δ polymerases significantly inhibits the repair of pyrimidine photodimers in foreskin-derived mitotic and MMC-induced postmitotic fibroblasts in low serum cultures (0.5%) following UVC irradiation. Over the concentration range of 0–2 μg/ml of aphidicolin, there is a strong concentration-dependent inhibition of repair in cells treated with 10 J/m<sup>2</sup> of UVC and incubated with aphidicolin during the post-incubation time (0–24 h). The results demonstrate that pyrimidine photodimers are repaired in low serum cultures by an α- and/or δ-polymerase-dependent pathway. These data also imply that the fibroblast differentiation system is a very useful tool to unravel the complex mechanisms of UV-induced DNA damage and repair.</p></div>","PeriodicalId":100937,"journal":{"name":"Mutation Research/DNAging","volume":"295 3","pages":"Pages 125-133"},"PeriodicalIF":0.0000,"publicationDate":"1993-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0921-8734(93)90014-T","citationCount":"12","resultStr":"{\"title\":\"Aphidicolin inhibits excision repair of UV-induced pyrimidine photodimers in low serum cultures of mitotic and mitomycin C-induced postmitotic human skin fibroblasts\",\"authors\":\"Hugo J. Niggli\",\"doi\":\"10.1016/0921-8734(93)90014-T\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rates of formation and excision of UVC light-induced cyclobutane-type pyrimidine photodimers were determined in cultures of foreskin-derived normal human fibroblasts in mitotic (MF) and mitomycin-C (MMC)-induced postmitotic fibroblasts (PMF). Characteristic morphological changes support the notion that MMC accelerates the differentiation pathway from MF to PMF. In cultures treated with aphidicolin, I am able to show that this inhibitor of α and/or δ polymerases significantly inhibits the repair of pyrimidine photodimers in foreskin-derived mitotic and MMC-induced postmitotic fibroblasts in low serum cultures (0.5%) following UVC irradiation. Over the concentration range of 0–2 μg/ml of aphidicolin, there is a strong concentration-dependent inhibition of repair in cells treated with 10 J/m<sup>2</sup> of UVC and incubated with aphidicolin during the post-incubation time (0–24 h). The results demonstrate that pyrimidine photodimers are repaired in low serum cultures by an α- and/or δ-polymerase-dependent pathway. These data also imply that the fibroblast differentiation system is a very useful tool to unravel the complex mechanisms of UV-induced DNA damage and repair.</p></div>\",\"PeriodicalId\":100937,\"journal\":{\"name\":\"Mutation Research/DNAging\",\"volume\":\"295 3\",\"pages\":\"Pages 125-133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0921-8734(93)90014-T\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research/DNAging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/092187349390014T\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNAging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/092187349390014T","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aphidicolin inhibits excision repair of UV-induced pyrimidine photodimers in low serum cultures of mitotic and mitomycin C-induced postmitotic human skin fibroblasts
The rates of formation and excision of UVC light-induced cyclobutane-type pyrimidine photodimers were determined in cultures of foreskin-derived normal human fibroblasts in mitotic (MF) and mitomycin-C (MMC)-induced postmitotic fibroblasts (PMF). Characteristic morphological changes support the notion that MMC accelerates the differentiation pathway from MF to PMF. In cultures treated with aphidicolin, I am able to show that this inhibitor of α and/or δ polymerases significantly inhibits the repair of pyrimidine photodimers in foreskin-derived mitotic and MMC-induced postmitotic fibroblasts in low serum cultures (0.5%) following UVC irradiation. Over the concentration range of 0–2 μg/ml of aphidicolin, there is a strong concentration-dependent inhibition of repair in cells treated with 10 J/m2 of UVC and incubated with aphidicolin during the post-incubation time (0–24 h). The results demonstrate that pyrimidine photodimers are repaired in low serum cultures by an α- and/or δ-polymerase-dependent pathway. These data also imply that the fibroblast differentiation system is a very useful tool to unravel the complex mechanisms of UV-induced DNA damage and repair.