心肌亚细胞Ca2+再分布原位测量:时间分辨快速冷冻和电子探针微量分析。

Scanning microscopy. Supplement Pub Date : 1994-01-01
M Bond, M D Schluchter, E Keller, C S Moravec
{"title":"心肌亚细胞Ca2+再分布原位测量:时间分辨快速冷冻和电子探针微量分析。","authors":"M Bond,&nbsp;M D Schluchter,&nbsp;E Keller,&nbsp;C S Moravec","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>To directly assess the physiological roles of sarcoplasmic reticulum (SR) and mitochondria (MT), we have utilized energy dispersive electron probe microanalysis (EPMA) on ultrathin freeze-dried cryosections from isolated papillary muscles, rapidly frozen at precise time points of the contractile cycle. Using this approach, we can detect redistribution of subcellular Ca2+ during the cardiac contractile cycle. Changes in Ca2+ of less than 1.0 mmol/kg dry wt can be detected. By determining the variability of the Ca2+ measurements in preliminary experiments, we have also demonstrated that it is possible to optimize experimental design, i.e., to predict the number of animals per treatment group and the number of X-ray spectra per animal that are required in order to detect a specified Ca2+ difference. Quantitative EPMA of rapidly frozen contracting papillary muscle has also allowed us to correlate the Ca2+ content of SR and MT with the contractile state of the muscle. Our results show a decrease of 40% in the amount of Ca2+ stored in the junctional SR during a cardiac muscle twitch, thus providing direct evidence for a role of the SR as a primary site of Ca2+ release. In addition, we have demonstrated dissociation between MT Ca2+ uptake and activation of regulatory enzymes, such as pyruvate dehydrogenase, indicating that MT Ca2+ uptake is not required for activation of MT metabolism.</p>","PeriodicalId":77379,"journal":{"name":"Scanning microscopy. Supplement","volume":"8 ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of subcellular Ca2+ redistribution in cardiac muscle in situ: time resolved rapid freezing and electron probe microanalysis.\",\"authors\":\"M Bond,&nbsp;M D Schluchter,&nbsp;E Keller,&nbsp;C S Moravec\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To directly assess the physiological roles of sarcoplasmic reticulum (SR) and mitochondria (MT), we have utilized energy dispersive electron probe microanalysis (EPMA) on ultrathin freeze-dried cryosections from isolated papillary muscles, rapidly frozen at precise time points of the contractile cycle. Using this approach, we can detect redistribution of subcellular Ca2+ during the cardiac contractile cycle. Changes in Ca2+ of less than 1.0 mmol/kg dry wt can be detected. By determining the variability of the Ca2+ measurements in preliminary experiments, we have also demonstrated that it is possible to optimize experimental design, i.e., to predict the number of animals per treatment group and the number of X-ray spectra per animal that are required in order to detect a specified Ca2+ difference. Quantitative EPMA of rapidly frozen contracting papillary muscle has also allowed us to correlate the Ca2+ content of SR and MT with the contractile state of the muscle. Our results show a decrease of 40% in the amount of Ca2+ stored in the junctional SR during a cardiac muscle twitch, thus providing direct evidence for a role of the SR as a primary site of Ca2+ release. In addition, we have demonstrated dissociation between MT Ca2+ uptake and activation of regulatory enzymes, such as pyruvate dehydrogenase, indicating that MT Ca2+ uptake is not required for activation of MT metabolism.</p>\",\"PeriodicalId\":77379,\"journal\":{\"name\":\"Scanning microscopy. Supplement\",\"volume\":\"8 \",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scanning microscopy. Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scanning microscopy. Supplement","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了直接评估肌浆网(SR)和线粒体(MT)的生理作用,我们利用能量色散电子探针显微分析(EPMA)对分离的乳头状肌超薄冻干冷冻切片进行了分析,并在收缩周期的精确时间点快速冷冻。使用这种方法,我们可以检测亚细胞Ca2+在心脏收缩周期的再分配。Ca2+的变化可以检测到小于1.0 mmol/kg干wt。通过确定初步实验中Ca2+测量的可变性,我们也证明了优化实验设计是可能的,即预测每个治疗组的动物数量和每只动物所需的x射线光谱数量,以检测特定的Ca2+差异。快速冷冻收缩乳头状肌的定量EPMA也使我们能够将SR和MT的Ca2+含量与肌肉的收缩状态相关联。我们的研究结果显示,在心肌抽搐期间,连接SR中的Ca2+储存量减少了40%,从而为SR作为Ca2+释放的主要部位的作用提供了直接证据。此外,我们已经证明了MT Ca2+摄取和调节酶(如丙酮酸脱氢酶)激活之间的解离,表明MT Ca2+摄取不是MT代谢激活所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement of subcellular Ca2+ redistribution in cardiac muscle in situ: time resolved rapid freezing and electron probe microanalysis.

To directly assess the physiological roles of sarcoplasmic reticulum (SR) and mitochondria (MT), we have utilized energy dispersive electron probe microanalysis (EPMA) on ultrathin freeze-dried cryosections from isolated papillary muscles, rapidly frozen at precise time points of the contractile cycle. Using this approach, we can detect redistribution of subcellular Ca2+ during the cardiac contractile cycle. Changes in Ca2+ of less than 1.0 mmol/kg dry wt can be detected. By determining the variability of the Ca2+ measurements in preliminary experiments, we have also demonstrated that it is possible to optimize experimental design, i.e., to predict the number of animals per treatment group and the number of X-ray spectra per animal that are required in order to detect a specified Ca2+ difference. Quantitative EPMA of rapidly frozen contracting papillary muscle has also allowed us to correlate the Ca2+ content of SR and MT with the contractile state of the muscle. Our results show a decrease of 40% in the amount of Ca2+ stored in the junctional SR during a cardiac muscle twitch, thus providing direct evidence for a role of the SR as a primary site of Ca2+ release. In addition, we have demonstrated dissociation between MT Ca2+ uptake and activation of regulatory enzymes, such as pyruvate dehydrogenase, indicating that MT Ca2+ uptake is not required for activation of MT metabolism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信