脂蛋白glyco-oxidation。

Diabete & metabolisme Pub Date : 1995-04-01
S Picard
{"title":"脂蛋白glyco-oxidation。","authors":"S Picard","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases are the leading cause of death during diabetes, and qualitative changes in lipoproteins play a role in the pathogenesis of atherosclerosis. Hyperglycaemia induces glycation of lipoproteins, particularly low-density lipoproteins (LDL), preventing the recognition of apoprotein B by the specific receptor and favouring the accumulation of LDL in macrophages and their oxidation. Other effects contribute to increased LDL oxidation in diabetes: higher production (and decreased degradation) of free radicals, the association of hypertriglyceridemia with the presence of small, dense, more easily oxidizable LDL, and high-density lipoprotein anomalies which reduce LDL antioxidant capacities. Glycation- oxidation interactions are complex. Although glycated LDL are more easily oxidizable, antioxidants could also reduce protein glycation independently of glycaemic balance. The role of glyco-oxidative changes in the pathogenesis of atherosclerosis during diabetes is difficult to determine, partly because of methodological problems related to the presence of circulating antioxidants which allow only minimal (and not easily demonstrable) LDL oxidation. The development of measurements sensitive to lipoprotein oxidation should facilitate the determination of LDL oxidative status. The main means of preventing and treating glyco-oxidative alterations are the normalisation of LDL-cholesterol concentrations and the improvement of glycaemic balance. Prospective studies are needed to determine the role of antioxidants in the prevention and/or treatment of atheromatous disease during diabetes.</p>","PeriodicalId":11111,"journal":{"name":"Diabete & metabolisme","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipoprotein glyco-oxidation.\",\"authors\":\"S Picard\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular diseases are the leading cause of death during diabetes, and qualitative changes in lipoproteins play a role in the pathogenesis of atherosclerosis. Hyperglycaemia induces glycation of lipoproteins, particularly low-density lipoproteins (LDL), preventing the recognition of apoprotein B by the specific receptor and favouring the accumulation of LDL in macrophages and their oxidation. Other effects contribute to increased LDL oxidation in diabetes: higher production (and decreased degradation) of free radicals, the association of hypertriglyceridemia with the presence of small, dense, more easily oxidizable LDL, and high-density lipoprotein anomalies which reduce LDL antioxidant capacities. Glycation- oxidation interactions are complex. Although glycated LDL are more easily oxidizable, antioxidants could also reduce protein glycation independently of glycaemic balance. The role of glyco-oxidative changes in the pathogenesis of atherosclerosis during diabetes is difficult to determine, partly because of methodological problems related to the presence of circulating antioxidants which allow only minimal (and not easily demonstrable) LDL oxidation. The development of measurements sensitive to lipoprotein oxidation should facilitate the determination of LDL oxidative status. The main means of preventing and treating glyco-oxidative alterations are the normalisation of LDL-cholesterol concentrations and the improvement of glycaemic balance. Prospective studies are needed to determine the role of antioxidants in the prevention and/or treatment of atheromatous disease during diabetes.</p>\",\"PeriodicalId\":11111,\"journal\":{\"name\":\"Diabete & metabolisme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabete & metabolisme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabete & metabolisme","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病是糖尿病患者死亡的主要原因,脂蛋白的质变在动脉粥样硬化的发病机制中起作用。高血糖诱导脂蛋白,特别是低密度脂蛋白(LDL)的糖基化,阻止特定受体对载脂蛋白B的识别,并有利于LDL在巨噬细胞中的积累和氧化。其他影响导致糖尿病中LDL氧化增加:自由基产生增加(降解减少),高甘油三酯血症与小、致密、更容易氧化的LDL存在的关联,以及高密度脂蛋白异常降低LDL的抗氧化能力。糖基化-氧化相互作用是复杂的。虽然糖化LDL更容易被氧化,抗氧化剂也可以独立于血糖平衡降低蛋白质糖化。糖氧化变化在糖尿病动脉粥样硬化发病机制中的作用很难确定,部分原因是与循环抗氧化剂的存在有关的方法学问题,这些抗氧化剂只允许最低限度的LDL氧化(不易证明)。对脂蛋白氧化敏感的测量方法的发展将有助于LDL氧化状态的测定。预防和治疗糖氧化改变的主要手段是使ldl -胆固醇浓度正常化和改善血糖平衡。需要前瞻性研究来确定抗氧化剂在预防和/或治疗糖尿病期间动脉粥样硬化疾病中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lipoprotein glyco-oxidation.

Cardiovascular diseases are the leading cause of death during diabetes, and qualitative changes in lipoproteins play a role in the pathogenesis of atherosclerosis. Hyperglycaemia induces glycation of lipoproteins, particularly low-density lipoproteins (LDL), preventing the recognition of apoprotein B by the specific receptor and favouring the accumulation of LDL in macrophages and their oxidation. Other effects contribute to increased LDL oxidation in diabetes: higher production (and decreased degradation) of free radicals, the association of hypertriglyceridemia with the presence of small, dense, more easily oxidizable LDL, and high-density lipoprotein anomalies which reduce LDL antioxidant capacities. Glycation- oxidation interactions are complex. Although glycated LDL are more easily oxidizable, antioxidants could also reduce protein glycation independently of glycaemic balance. The role of glyco-oxidative changes in the pathogenesis of atherosclerosis during diabetes is difficult to determine, partly because of methodological problems related to the presence of circulating antioxidants which allow only minimal (and not easily demonstrable) LDL oxidation. The development of measurements sensitive to lipoprotein oxidation should facilitate the determination of LDL oxidative status. The main means of preventing and treating glyco-oxidative alterations are the normalisation of LDL-cholesterol concentrations and the improvement of glycaemic balance. Prospective studies are needed to determine the role of antioxidants in the prevention and/or treatment of atheromatous disease during diabetes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信