心肌缺血和再灌注。

Monographs in pathology Pub Date : 1995-01-01
R B Jennings, C Steenbergen, K A Reimer
{"title":"心肌缺血和再灌注。","authors":"R B Jennings,&nbsp;C Steenbergen,&nbsp;K A Reimer","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial infarction is a dynamic process that begins with the transition from reversible to irreversible ischemic injury and culminates in the replacement of dead myocardium by a fibrous scar. Many biochemical and metabolic changes have been observed early after the onset of ischemia, but the precise cause of the transition to irreversibility has not been elucidated. However, disruption of the plasmalemma of the sarcolemma is an early event, the presence of which indicates that the ischemic myocytes are dead. Not all ischemic myocytes become irreversibly injured simultaneously in experimental infarction in the canine heart; rather, myocytes die in a transmural wavefront of cell death proceeding from the subendocardial to the subepicardial myocardium with the subendocardial layer dying first and the subepicardial layer last. About 6 hours of ischemia are required to complete the wave-front. During the reversible phase of ischemic injury, reperfusion salvages all ischemic myocytes in all layers, but once lethal injury begins to develop, reperfusion salvages reversibly injured myocytes that are located chiefly in the subepicardial and midmyocardial layers and thereby limits the transmural extent of infarction. The gradual evolution of cell death in experimental acute ischemia provides a basis for limitation of infarct size by reperfusion with arterial blood in man. Many functions of myocardium subjected to reversible episodes of ischemia return to the control condition a few seconds or minutes after the onset of reperfusion. Others, such as repletion of the adenine nucleotide pool, require hours to days to repair. Reversibly injured myocardium exhibits reduced contractile efficiency, termed stunning, which is a form of reperfusion injury. Stunning is reversible; it disappears after hours or days of reperfusion. Finally, reversibly injured myocardium develops adaptive changes that protect it against subsequent episodes of ischemia. One such change, termed ischemic preconditioning, persists for 1-2 hours and serves to delay the development of cell death if the tissue is subjected to a new prolonged episode of ischemia. Another, heat shock protein synthesis, does not appear until the tissue has been reperfused for 12-24 hours; it also protects the myocardium against subsequent ischemic injury. The molecular mechanisms underlying stunning, ischemic preconditioning, and heat shock protein synthesis remain to be established.</p>","PeriodicalId":76185,"journal":{"name":"Monographs in pathology","volume":"37 ","pages":"47-80"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Myocardial ischemia and reperfusion.\",\"authors\":\"R B Jennings,&nbsp;C Steenbergen,&nbsp;K A Reimer\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myocardial infarction is a dynamic process that begins with the transition from reversible to irreversible ischemic injury and culminates in the replacement of dead myocardium by a fibrous scar. Many biochemical and metabolic changes have been observed early after the onset of ischemia, but the precise cause of the transition to irreversibility has not been elucidated. However, disruption of the plasmalemma of the sarcolemma is an early event, the presence of which indicates that the ischemic myocytes are dead. Not all ischemic myocytes become irreversibly injured simultaneously in experimental infarction in the canine heart; rather, myocytes die in a transmural wavefront of cell death proceeding from the subendocardial to the subepicardial myocardium with the subendocardial layer dying first and the subepicardial layer last. About 6 hours of ischemia are required to complete the wave-front. During the reversible phase of ischemic injury, reperfusion salvages all ischemic myocytes in all layers, but once lethal injury begins to develop, reperfusion salvages reversibly injured myocytes that are located chiefly in the subepicardial and midmyocardial layers and thereby limits the transmural extent of infarction. The gradual evolution of cell death in experimental acute ischemia provides a basis for limitation of infarct size by reperfusion with arterial blood in man. Many functions of myocardium subjected to reversible episodes of ischemia return to the control condition a few seconds or minutes after the onset of reperfusion. Others, such as repletion of the adenine nucleotide pool, require hours to days to repair. Reversibly injured myocardium exhibits reduced contractile efficiency, termed stunning, which is a form of reperfusion injury. Stunning is reversible; it disappears after hours or days of reperfusion. Finally, reversibly injured myocardium develops adaptive changes that protect it against subsequent episodes of ischemia. One such change, termed ischemic preconditioning, persists for 1-2 hours and serves to delay the development of cell death if the tissue is subjected to a new prolonged episode of ischemia. Another, heat shock protein synthesis, does not appear until the tissue has been reperfused for 12-24 hours; it also protects the myocardium against subsequent ischemic injury. The molecular mechanisms underlying stunning, ischemic preconditioning, and heat shock protein synthesis remain to be established.</p>\",\"PeriodicalId\":76185,\"journal\":{\"name\":\"Monographs in pathology\",\"volume\":\"37 \",\"pages\":\"47-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monographs in pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monographs in pathology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心肌梗死是一个动态过程,从可逆到不可逆的缺血性损伤转变开始,最终以纤维瘢痕取代坏死心肌而告终。许多生化和代谢的变化在缺血发生后早期被观察到,但过渡到不可逆性的确切原因尚未阐明。然而,肌膜质膜的破坏是一个早期事件,它的存在表明缺血肌细胞已经死亡。在实验性心肌梗死中,并非所有缺血心肌细胞同时发生不可逆损伤;相反,心肌细胞是在从心内膜下到心外膜下的细胞死亡的跨壁波前中死亡的,心内膜下层首先死亡,心外膜下层最后死亡。大约需要6小时的缺血来完成波前。在缺血损伤的可逆性阶段,再灌注挽救了各层的所有缺血肌细胞,但一旦致死性损伤开始发展,再灌注挽救了主要位于心外膜下和心肌中层的可逆性损伤肌细胞,从而限制了梗死的跨壁范围。实验性急性缺血中细胞死亡的逐渐演变为动脉血流再灌注限制梗死面积提供了依据。可逆性缺血发作后,心肌的许多功能在再灌注开始后几秒或几分钟内恢复到对照状态。其他的,如腺嘌呤核苷酸库的补充,则需要数小时到数天的时间来修复。可逆性损伤心肌表现为收缩效率降低,称为休克,这是再灌注损伤的一种形式。惊艳是可逆的;再灌注数小时或数天后消失。最后,可逆性损伤的心肌发生适应性变化,保护其免受随后的缺血发作。其中一种变化,称为缺血预处理,持续1-2小时,如果组织遭受新的长时间缺血发作,可延迟细胞死亡的发展。另一种是热休克蛋白合成,直到组织再灌注12-24小时才出现;它还保护心肌免受随后的缺血性损伤。休克、缺血预处理和热休克蛋白合成的分子机制仍有待确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Myocardial ischemia and reperfusion.

Myocardial infarction is a dynamic process that begins with the transition from reversible to irreversible ischemic injury and culminates in the replacement of dead myocardium by a fibrous scar. Many biochemical and metabolic changes have been observed early after the onset of ischemia, but the precise cause of the transition to irreversibility has not been elucidated. However, disruption of the plasmalemma of the sarcolemma is an early event, the presence of which indicates that the ischemic myocytes are dead. Not all ischemic myocytes become irreversibly injured simultaneously in experimental infarction in the canine heart; rather, myocytes die in a transmural wavefront of cell death proceeding from the subendocardial to the subepicardial myocardium with the subendocardial layer dying first and the subepicardial layer last. About 6 hours of ischemia are required to complete the wave-front. During the reversible phase of ischemic injury, reperfusion salvages all ischemic myocytes in all layers, but once lethal injury begins to develop, reperfusion salvages reversibly injured myocytes that are located chiefly in the subepicardial and midmyocardial layers and thereby limits the transmural extent of infarction. The gradual evolution of cell death in experimental acute ischemia provides a basis for limitation of infarct size by reperfusion with arterial blood in man. Many functions of myocardium subjected to reversible episodes of ischemia return to the control condition a few seconds or minutes after the onset of reperfusion. Others, such as repletion of the adenine nucleotide pool, require hours to days to repair. Reversibly injured myocardium exhibits reduced contractile efficiency, termed stunning, which is a form of reperfusion injury. Stunning is reversible; it disappears after hours or days of reperfusion. Finally, reversibly injured myocardium develops adaptive changes that protect it against subsequent episodes of ischemia. One such change, termed ischemic preconditioning, persists for 1-2 hours and serves to delay the development of cell death if the tissue is subjected to a new prolonged episode of ischemia. Another, heat shock protein synthesis, does not appear until the tissue has been reperfused for 12-24 hours; it also protects the myocardium against subsequent ischemic injury. The molecular mechanisms underlying stunning, ischemic preconditioning, and heat shock protein synthesis remain to be established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信