{"title":"利用序列同源性分析了电压门控离子通道蛋白的结构和功能。","authors":"H R Guy, S R Durell","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular modeling and mutagenesis analysis of voltage-gated channels have succeeded in identifying much of the topology of the proteins and in identifying which sequential segments are involved in functional mechanisms such as activation gating, inactivation gating, ion selectivity, and ligand binding. Efforts are currently underway to use these methods to model the protein structure and functional mechanisms more precisely. The experimental and theoretical efforts are dependent to a considerable extent upon information obtained by comparing homologous sequences. Although the fine details of models developed in this manner are unlikely to be as correct as models developed from x-ray crystallography and NMR, they still may contribute substantially to our understanding of the structure and function of these important proteins.</p>","PeriodicalId":76550,"journal":{"name":"Society of General Physiologists series","volume":"49 ","pages":"197-212"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using sequence homology to analyze the structure and function of voltage-gated ion channel proteins.\",\"authors\":\"H R Guy, S R Durell\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Molecular modeling and mutagenesis analysis of voltage-gated channels have succeeded in identifying much of the topology of the proteins and in identifying which sequential segments are involved in functional mechanisms such as activation gating, inactivation gating, ion selectivity, and ligand binding. Efforts are currently underway to use these methods to model the protein structure and functional mechanisms more precisely. The experimental and theoretical efforts are dependent to a considerable extent upon information obtained by comparing homologous sequences. Although the fine details of models developed in this manner are unlikely to be as correct as models developed from x-ray crystallography and NMR, they still may contribute substantially to our understanding of the structure and function of these important proteins.</p>\",\"PeriodicalId\":76550,\"journal\":{\"name\":\"Society of General Physiologists series\",\"volume\":\"49 \",\"pages\":\"197-212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Society of General Physiologists series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Society of General Physiologists series","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using sequence homology to analyze the structure and function of voltage-gated ion channel proteins.
Molecular modeling and mutagenesis analysis of voltage-gated channels have succeeded in identifying much of the topology of the proteins and in identifying which sequential segments are involved in functional mechanisms such as activation gating, inactivation gating, ion selectivity, and ligand binding. Efforts are currently underway to use these methods to model the protein structure and functional mechanisms more precisely. The experimental and theoretical efforts are dependent to a considerable extent upon information obtained by comparing homologous sequences. Although the fine details of models developed in this manner are unlikely to be as correct as models developed from x-ray crystallography and NMR, they still may contribute substantially to our understanding of the structure and function of these important proteins.