{"title":"用冷却速率测量和扫描电子显微镜研究组织标本的冷冻固定。","authors":"K Zierold","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The freezing velocity, the most important parameter for the quality of cryofixation of biological objects, was measured in frog liver specimens. The cooling course was found to depend on the size of the specimen, the specimen support and the cooling medium used (liquid nitrogen, supercooled nitrogen, Freon 12 and propane). The results were compared with scanning electron micrographs of freeze fractures cryofixed in the same manner: Propane yielded the highest cooling rates and, consequently, the best structural preservation. Morphologically similar results were obtained by combining Freon 12 and very small specimen supports. Generally, it can be said that the smaller both specimen and specimen support are, the higher is the freezing rate and the better the structural preservation. The findings are discussed with regard to further possibilities of improving the cryofixation of biological tissue.</p>","PeriodicalId":76158,"journal":{"name":"Microscopica acta","volume":"83 1","pages":"25-32"},"PeriodicalIF":0.0000,"publicationDate":"1980-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryofixation of tissue specimens studied by cooling rate measurements and scanning electron microscopy.\",\"authors\":\"K Zierold\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The freezing velocity, the most important parameter for the quality of cryofixation of biological objects, was measured in frog liver specimens. The cooling course was found to depend on the size of the specimen, the specimen support and the cooling medium used (liquid nitrogen, supercooled nitrogen, Freon 12 and propane). The results were compared with scanning electron micrographs of freeze fractures cryofixed in the same manner: Propane yielded the highest cooling rates and, consequently, the best structural preservation. Morphologically similar results were obtained by combining Freon 12 and very small specimen supports. Generally, it can be said that the smaller both specimen and specimen support are, the higher is the freezing rate and the better the structural preservation. The findings are discussed with regard to further possibilities of improving the cryofixation of biological tissue.</p>\",\"PeriodicalId\":76158,\"journal\":{\"name\":\"Microscopica acta\",\"volume\":\"83 1\",\"pages\":\"25-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1980-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopica acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopica acta","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cryofixation of tissue specimens studied by cooling rate measurements and scanning electron microscopy.
The freezing velocity, the most important parameter for the quality of cryofixation of biological objects, was measured in frog liver specimens. The cooling course was found to depend on the size of the specimen, the specimen support and the cooling medium used (liquid nitrogen, supercooled nitrogen, Freon 12 and propane). The results were compared with scanning electron micrographs of freeze fractures cryofixed in the same manner: Propane yielded the highest cooling rates and, consequently, the best structural preservation. Morphologically similar results were obtained by combining Freon 12 and very small specimen supports. Generally, it can be said that the smaller both specimen and specimen support are, the higher is the freezing rate and the better the structural preservation. The findings are discussed with regard to further possibilities of improving the cryofixation of biological tissue.