{"title":"超导边界电磁能量测量的相对性和不确定度。应用于生物系统对弱磁场的感知。","authors":"F W Cope","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>From quantum mechanical and relativity principles applied to an observer using a bounded superconductive detector, any magnetic or electric field, which superficially may appear steady and homogeneous, should be perceived to have a wavelength and frequency which are functions of the size of the detector as well as of the energy density of the field. From the Heisenberg uncertainty principle, equations are derived for the uncertainties of measurement of field energy and of detector size as imposed by the principles of quantum mechanics, even if the instruments of measurement are perfect. If energy density is sufficiently low and/or size of detector is sufficiently small, then numerical values and geometries of the fields become unmeasurable by any experimental method but topological properties of the system may still be measurable. A method for estimation of size of superconductive microregions in materials or in living systems is derived. It is calculated that if superconductive microdetectors exist in living systems capable of detection of 0.1 to 1.0 gauss magnetic fields, then minimum superconductive detector diameters of 7.9 and 2.6 microns respectively are required, and these magnetic fields will have perceived effects equivalent to wavelengths of 7.9 and 2.6 microns respectively (the infrared region of light). The estimated detector sizes are comparable with the sizes of mitochondria, melanin granules, and retinal rods.</p>","PeriodicalId":20124,"journal":{"name":"Physiological chemistry and physics","volume":"13 3","pages":"231-9"},"PeriodicalIF":0.0000,"publicationDate":"1981-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the relativity and uncertainty of electromagnetic energy measurement at a superconductive boundary. Application to perception of weak magnetic fields by living systems.\",\"authors\":\"F W Cope\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>From quantum mechanical and relativity principles applied to an observer using a bounded superconductive detector, any magnetic or electric field, which superficially may appear steady and homogeneous, should be perceived to have a wavelength and frequency which are functions of the size of the detector as well as of the energy density of the field. From the Heisenberg uncertainty principle, equations are derived for the uncertainties of measurement of field energy and of detector size as imposed by the principles of quantum mechanics, even if the instruments of measurement are perfect. If energy density is sufficiently low and/or size of detector is sufficiently small, then numerical values and geometries of the fields become unmeasurable by any experimental method but topological properties of the system may still be measurable. A method for estimation of size of superconductive microregions in materials or in living systems is derived. It is calculated that if superconductive microdetectors exist in living systems capable of detection of 0.1 to 1.0 gauss magnetic fields, then minimum superconductive detector diameters of 7.9 and 2.6 microns respectively are required, and these magnetic fields will have perceived effects equivalent to wavelengths of 7.9 and 2.6 microns respectively (the infrared region of light). The estimated detector sizes are comparable with the sizes of mitochondria, melanin granules, and retinal rods.</p>\",\"PeriodicalId\":20124,\"journal\":{\"name\":\"Physiological chemistry and physics\",\"volume\":\"13 3\",\"pages\":\"231-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological chemistry and physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological chemistry and physics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the relativity and uncertainty of electromagnetic energy measurement at a superconductive boundary. Application to perception of weak magnetic fields by living systems.
From quantum mechanical and relativity principles applied to an observer using a bounded superconductive detector, any magnetic or electric field, which superficially may appear steady and homogeneous, should be perceived to have a wavelength and frequency which are functions of the size of the detector as well as of the energy density of the field. From the Heisenberg uncertainty principle, equations are derived for the uncertainties of measurement of field energy and of detector size as imposed by the principles of quantum mechanics, even if the instruments of measurement are perfect. If energy density is sufficiently low and/or size of detector is sufficiently small, then numerical values and geometries of the fields become unmeasurable by any experimental method but topological properties of the system may still be measurable. A method for estimation of size of superconductive microregions in materials or in living systems is derived. It is calculated that if superconductive microdetectors exist in living systems capable of detection of 0.1 to 1.0 gauss magnetic fields, then minimum superconductive detector diameters of 7.9 and 2.6 microns respectively are required, and these magnetic fields will have perceived effects equivalent to wavelengths of 7.9 and 2.6 microns respectively (the infrared region of light). The estimated detector sizes are comparable with the sizes of mitochondria, melanin granules, and retinal rods.