Marta Mandis , Roberto Baratti , Jorge Chebeir , Stefania Tronci , José A. Romagnoli
{"title":"控制策略的性能评价及其在NGL分离装置中的应用","authors":"Marta Mandis , Roberto Baratti , Jorge Chebeir , Stefania Tronci , José A. Romagnoli","doi":"10.1016/j.jngse.2022.104763","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this contribution, the problem of NGL<span> separation control is addressed by dealing with the most common process schemes. The main goal is to achieve a specified ethane recovery as well as maintaining certain levels of methane impurity in the demethanizer column. An indirect control of composition through the temperature control in the column is proposed. A cascade arrangement between the column temperature control and the controller that maintains a constant ratio of boil-up to column bottom product is proposed for the improvement of methane impurity levels<span>. Additionally, an “inferential” control approach based on Antoine's law is formulated and tested to enhance the ethane recovery control. The performance indexes calculated for ethane recovery and methane impurity show the superiority of the proposed control structure in each NGL separation process scheme. When the feed flowrate is reduced by 10%, the proposed control strategy allows a lower deviation from the target and a smaller offset with a reduction of 73.7% for ethane recovery and 72.7% for the methane concentration in the conventional process, 86.6% for ethane recovery and 96.4% for methane concentration in the GSP, and 97.1% for ethane recovery and 91.1% for methane concentration in the CRR process. In case of sinusoidal variations of </span></span></span>inlet flowrate, the integral square error is reduced by 99.33% for methane bottom concentration in the GSP process scheme, while ethane recovery shows a reduction of 82.69% in the CRR scheme.</p></div>","PeriodicalId":372,"journal":{"name":"Journal of Natural Gas Science and Engineering","volume":"106 ","pages":"Article 104763"},"PeriodicalIF":4.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance assessment of control strategies with application to NGL separation units\",\"authors\":\"Marta Mandis , Roberto Baratti , Jorge Chebeir , Stefania Tronci , José A. Romagnoli\",\"doi\":\"10.1016/j.jngse.2022.104763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this contribution, the problem of NGL<span> separation control is addressed by dealing with the most common process schemes. The main goal is to achieve a specified ethane recovery as well as maintaining certain levels of methane impurity in the demethanizer column. An indirect control of composition through the temperature control in the column is proposed. A cascade arrangement between the column temperature control and the controller that maintains a constant ratio of boil-up to column bottom product is proposed for the improvement of methane impurity levels<span>. Additionally, an “inferential” control approach based on Antoine's law is formulated and tested to enhance the ethane recovery control. The performance indexes calculated for ethane recovery and methane impurity show the superiority of the proposed control structure in each NGL separation process scheme. When the feed flowrate is reduced by 10%, the proposed control strategy allows a lower deviation from the target and a smaller offset with a reduction of 73.7% for ethane recovery and 72.7% for the methane concentration in the conventional process, 86.6% for ethane recovery and 96.4% for methane concentration in the GSP, and 97.1% for ethane recovery and 91.1% for methane concentration in the CRR process. In case of sinusoidal variations of </span></span></span>inlet flowrate, the integral square error is reduced by 99.33% for methane bottom concentration in the GSP process scheme, while ethane recovery shows a reduction of 82.69% in the CRR scheme.</p></div>\",\"PeriodicalId\":372,\"journal\":{\"name\":\"Journal of Natural Gas Science and Engineering\",\"volume\":\"106 \",\"pages\":\"Article 104763\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Gas Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875510022003493\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875510022003493","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Performance assessment of control strategies with application to NGL separation units
In this contribution, the problem of NGL separation control is addressed by dealing with the most common process schemes. The main goal is to achieve a specified ethane recovery as well as maintaining certain levels of methane impurity in the demethanizer column. An indirect control of composition through the temperature control in the column is proposed. A cascade arrangement between the column temperature control and the controller that maintains a constant ratio of boil-up to column bottom product is proposed for the improvement of methane impurity levels. Additionally, an “inferential” control approach based on Antoine's law is formulated and tested to enhance the ethane recovery control. The performance indexes calculated for ethane recovery and methane impurity show the superiority of the proposed control structure in each NGL separation process scheme. When the feed flowrate is reduced by 10%, the proposed control strategy allows a lower deviation from the target and a smaller offset with a reduction of 73.7% for ethane recovery and 72.7% for the methane concentration in the conventional process, 86.6% for ethane recovery and 96.4% for methane concentration in the GSP, and 97.1% for ethane recovery and 91.1% for methane concentration in the CRR process. In case of sinusoidal variations of inlet flowrate, the integral square error is reduced by 99.33% for methane bottom concentration in the GSP process scheme, while ethane recovery shows a reduction of 82.69% in the CRR scheme.
期刊介绍:
The objective of the Journal of Natural Gas Science & Engineering is to bridge the gap between the engineering and the science of natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of natural gas science and engineering from the reservoir to the market.
An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Natural Gas Science & Engineering covers the fields of natural gas exploration, production, processing and transmission in its broadest possible sense. Topics include: origin and accumulation of natural gas; natural gas geochemistry; gas-reservoir engineering; well logging, testing and evaluation; mathematical modelling; enhanced gas recovery; thermodynamics and phase behaviour, gas-reservoir modelling and simulation; natural gas production engineering; primary and enhanced production from unconventional gas resources, subsurface issues related to coalbed methane, tight gas, shale gas, and hydrate production, formation evaluation; exploration methods, multiphase flow and flow assurance issues, novel processing (e.g., subsea) techniques, raw gas transmission methods, gas processing/LNG technologies, sales gas transmission and storage. The Journal of Natural Gas Science & Engineering will also focus on economical, environmental, management and safety issues related to natural gas production, processing and transportation.