Xiaolei Wang , Dongming Zhang , Jiabo Geng , Zhehui Jin , Chongyang Wang , Kangde Ren
{"title":"CO2侵入对含矿煤孔隙结构特征的影响:对CO2注入压力的启示","authors":"Xiaolei Wang , Dongming Zhang , Jiabo Geng , Zhehui Jin , Chongyang Wang , Kangde Ren","doi":"10.1016/j.jngse.2022.104808","DOIUrl":null,"url":null,"abstract":"<div><p>CO<sub>2</sub><span> intrusion has a crucial effect on the pore structure of mineral-bearing coal. In this study, we selected long flame coal, lean coal, and anthracite after CO</span><sub>2</sub><span> adsorption at different pressures and tested the coal samples using X-ray diffraction, mercury intrusion porosimetry, and N</span><sub>2</sub><span> (77 K) adsorption methods. The tests were conducted to determine the variations in mineral content, pore structure, and fractal characteristics. The results showed that supercritical CO</span><sub>2</sub> had a greater ability to dissolve minerals in coal than that of subcritical CO<sub>2</sub>. Although the total pore volume and BET specific surface area gradually increased with the increase in CO<sub>2</sub><span> intrusion pressure in coal, the transformation of different pores and partial new pores caused by the dissolution of minerals and the adsorption swelling of coal matrix caused the micro-macropores in the three coal samples to exhibit different trends. The pore surface roughness and pore structure complexity of seepage pore in the long-flame coal after CO</span><sub>2</sub> adsorption increased while those of the lean coal and anthracite decreased. Meanwhile, CO<sub>2</sub> intrusion caused the surface of the adsorption pore in coal to become smooth, and the pore structure was more regular, except for the lean coal. A conceptual model of the mineral-bearing coal was developed to describe the relationship between the mineral composition and pore structure induced by CO<sub>2</sub> intrusion. These findings help to understand the transformation effect of CO<sub>2</sub><span> on coal seams. Thus, a higher CO</span><sub>2</sub><span> injection pressure<span> should be used to obtain a larger injection volume and shorter injection time during CO</span></span><sub>2</sub> storage implementation.</p></div>","PeriodicalId":372,"journal":{"name":"Journal of Natural Gas Science and Engineering","volume":"108 ","pages":"Article 104808"},"PeriodicalIF":4.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Effects of CO2 intrusion on pore structure characteristics of mineral-bearing coal: Implication for CO2 injection pressure\",\"authors\":\"Xiaolei Wang , Dongming Zhang , Jiabo Geng , Zhehui Jin , Chongyang Wang , Kangde Ren\",\"doi\":\"10.1016/j.jngse.2022.104808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>CO<sub>2</sub><span> intrusion has a crucial effect on the pore structure of mineral-bearing coal. In this study, we selected long flame coal, lean coal, and anthracite after CO</span><sub>2</sub><span> adsorption at different pressures and tested the coal samples using X-ray diffraction, mercury intrusion porosimetry, and N</span><sub>2</sub><span> (77 K) adsorption methods. The tests were conducted to determine the variations in mineral content, pore structure, and fractal characteristics. The results showed that supercritical CO</span><sub>2</sub> had a greater ability to dissolve minerals in coal than that of subcritical CO<sub>2</sub>. Although the total pore volume and BET specific surface area gradually increased with the increase in CO<sub>2</sub><span> intrusion pressure in coal, the transformation of different pores and partial new pores caused by the dissolution of minerals and the adsorption swelling of coal matrix caused the micro-macropores in the three coal samples to exhibit different trends. The pore surface roughness and pore structure complexity of seepage pore in the long-flame coal after CO</span><sub>2</sub> adsorption increased while those of the lean coal and anthracite decreased. Meanwhile, CO<sub>2</sub> intrusion caused the surface of the adsorption pore in coal to become smooth, and the pore structure was more regular, except for the lean coal. A conceptual model of the mineral-bearing coal was developed to describe the relationship between the mineral composition and pore structure induced by CO<sub>2</sub> intrusion. These findings help to understand the transformation effect of CO<sub>2</sub><span> on coal seams. Thus, a higher CO</span><sub>2</sub><span> injection pressure<span> should be used to obtain a larger injection volume and shorter injection time during CO</span></span><sub>2</sub> storage implementation.</p></div>\",\"PeriodicalId\":372,\"journal\":{\"name\":\"Journal of Natural Gas Science and Engineering\",\"volume\":\"108 \",\"pages\":\"Article 104808\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Gas Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875510022003948\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875510022003948","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Effects of CO2 intrusion on pore structure characteristics of mineral-bearing coal: Implication for CO2 injection pressure
CO2 intrusion has a crucial effect on the pore structure of mineral-bearing coal. In this study, we selected long flame coal, lean coal, and anthracite after CO2 adsorption at different pressures and tested the coal samples using X-ray diffraction, mercury intrusion porosimetry, and N2 (77 K) adsorption methods. The tests were conducted to determine the variations in mineral content, pore structure, and fractal characteristics. The results showed that supercritical CO2 had a greater ability to dissolve minerals in coal than that of subcritical CO2. Although the total pore volume and BET specific surface area gradually increased with the increase in CO2 intrusion pressure in coal, the transformation of different pores and partial new pores caused by the dissolution of minerals and the adsorption swelling of coal matrix caused the micro-macropores in the three coal samples to exhibit different trends. The pore surface roughness and pore structure complexity of seepage pore in the long-flame coal after CO2 adsorption increased while those of the lean coal and anthracite decreased. Meanwhile, CO2 intrusion caused the surface of the adsorption pore in coal to become smooth, and the pore structure was more regular, except for the lean coal. A conceptual model of the mineral-bearing coal was developed to describe the relationship between the mineral composition and pore structure induced by CO2 intrusion. These findings help to understand the transformation effect of CO2 on coal seams. Thus, a higher CO2 injection pressure should be used to obtain a larger injection volume and shorter injection time during CO2 storage implementation.
期刊介绍:
The objective of the Journal of Natural Gas Science & Engineering is to bridge the gap between the engineering and the science of natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of natural gas science and engineering from the reservoir to the market.
An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Natural Gas Science & Engineering covers the fields of natural gas exploration, production, processing and transmission in its broadest possible sense. Topics include: origin and accumulation of natural gas; natural gas geochemistry; gas-reservoir engineering; well logging, testing and evaluation; mathematical modelling; enhanced gas recovery; thermodynamics and phase behaviour, gas-reservoir modelling and simulation; natural gas production engineering; primary and enhanced production from unconventional gas resources, subsurface issues related to coalbed methane, tight gas, shale gas, and hydrate production, formation evaluation; exploration methods, multiphase flow and flow assurance issues, novel processing (e.g., subsea) techniques, raw gas transmission methods, gas processing/LNG technologies, sales gas transmission and storage. The Journal of Natural Gas Science & Engineering will also focus on economical, environmental, management and safety issues related to natural gas production, processing and transportation.