{"title":"真三轴应力作用下流体和支撑剂性质对水平水力裂缝中支撑剂运移和分布的影响","authors":"Haoze Li, Bingxiang Huang, Xinglong Zhao, Zhanwei Wu, Xuejie Jiao, Xiaoke Han, Zheng Sun","doi":"10.1016/j.jngse.2022.104795","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Proppant<span> distribution and sedimentary area spacing are crucial factors that influence fracture closure<span>, and they directly impact the efficiency and effective utilisation time of unconventional oil and gas. However, the fracture surface<span> roughness of actual hydraulic fractures and the development of microfractures significantly impact </span></span></span></span>proppant transport<span><span>. Few proppant transport laws for hydraulic fractures under true-triaxial stresses have been proposed. In this study, the effects of fluid and proppant properties on proppant transport and distribution in horizontal coal hydraulic fractures were investigated using a true-triaxial hydraulic fracturing experimental system subjected to high-pressure sand injection. The results show that high-injection-rate fracturing and low-injection-rate sand injection facilitate proppant transport to </span>fracture tip and increase the distribution area of the proppant in fractures. The high viscosity of sand-carrying fluid improves the carrying capacity of the proppant but also increases the transport resistance. The resistance and the buoyancy of the high-viscosity fluid make the proppant transport complex. The higher the </span></span>proppant concentration, the larger the proppant settlement at the crack entrance, and the closer the proppant-transport distance. During multiple sand injections, the proppant injected previously is pressed into the </span>coal seam<span> under the closure stress. The stress required to migrate the proppant injected subsequently is higher, and the proppant settlement at the crack inlet is larger. The smaller the proppant particle<span> size, the easier the proppant penetrates the microcracks<span>; this is more conducive to reaching the crack tip and promoting the fracture network development.</span></span></span></p></div>","PeriodicalId":372,"journal":{"name":"Journal of Natural Gas Science and Engineering","volume":"108 ","pages":"Article 104795"},"PeriodicalIF":4.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Effects of fluid and proppant properties on proppant transport and distribution in horizontal hydraulic fractures of coal under true-triaxial stresses\",\"authors\":\"Haoze Li, Bingxiang Huang, Xinglong Zhao, Zhanwei Wu, Xuejie Jiao, Xiaoke Han, Zheng Sun\",\"doi\":\"10.1016/j.jngse.2022.104795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Proppant<span> distribution and sedimentary area spacing are crucial factors that influence fracture closure<span>, and they directly impact the efficiency and effective utilisation time of unconventional oil and gas. However, the fracture surface<span> roughness of actual hydraulic fractures and the development of microfractures significantly impact </span></span></span></span>proppant transport<span><span>. Few proppant transport laws for hydraulic fractures under true-triaxial stresses have been proposed. In this study, the effects of fluid and proppant properties on proppant transport and distribution in horizontal coal hydraulic fractures were investigated using a true-triaxial hydraulic fracturing experimental system subjected to high-pressure sand injection. The results show that high-injection-rate fracturing and low-injection-rate sand injection facilitate proppant transport to </span>fracture tip and increase the distribution area of the proppant in fractures. The high viscosity of sand-carrying fluid improves the carrying capacity of the proppant but also increases the transport resistance. The resistance and the buoyancy of the high-viscosity fluid make the proppant transport complex. The higher the </span></span>proppant concentration, the larger the proppant settlement at the crack entrance, and the closer the proppant-transport distance. During multiple sand injections, the proppant injected previously is pressed into the </span>coal seam<span> under the closure stress. The stress required to migrate the proppant injected subsequently is higher, and the proppant settlement at the crack inlet is larger. The smaller the proppant particle<span> size, the easier the proppant penetrates the microcracks<span>; this is more conducive to reaching the crack tip and promoting the fracture network development.</span></span></span></p></div>\",\"PeriodicalId\":372,\"journal\":{\"name\":\"Journal of Natural Gas Science and Engineering\",\"volume\":\"108 \",\"pages\":\"Article 104795\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Gas Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187551002200381X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187551002200381X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Effects of fluid and proppant properties on proppant transport and distribution in horizontal hydraulic fractures of coal under true-triaxial stresses
Proppant distribution and sedimentary area spacing are crucial factors that influence fracture closure, and they directly impact the efficiency and effective utilisation time of unconventional oil and gas. However, the fracture surface roughness of actual hydraulic fractures and the development of microfractures significantly impact proppant transport. Few proppant transport laws for hydraulic fractures under true-triaxial stresses have been proposed. In this study, the effects of fluid and proppant properties on proppant transport and distribution in horizontal coal hydraulic fractures were investigated using a true-triaxial hydraulic fracturing experimental system subjected to high-pressure sand injection. The results show that high-injection-rate fracturing and low-injection-rate sand injection facilitate proppant transport to fracture tip and increase the distribution area of the proppant in fractures. The high viscosity of sand-carrying fluid improves the carrying capacity of the proppant but also increases the transport resistance. The resistance and the buoyancy of the high-viscosity fluid make the proppant transport complex. The higher the proppant concentration, the larger the proppant settlement at the crack entrance, and the closer the proppant-transport distance. During multiple sand injections, the proppant injected previously is pressed into the coal seam under the closure stress. The stress required to migrate the proppant injected subsequently is higher, and the proppant settlement at the crack inlet is larger. The smaller the proppant particle size, the easier the proppant penetrates the microcracks; this is more conducive to reaching the crack tip and promoting the fracture network development.
期刊介绍:
The objective of the Journal of Natural Gas Science & Engineering is to bridge the gap between the engineering and the science of natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of natural gas science and engineering from the reservoir to the market.
An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Natural Gas Science & Engineering covers the fields of natural gas exploration, production, processing and transmission in its broadest possible sense. Topics include: origin and accumulation of natural gas; natural gas geochemistry; gas-reservoir engineering; well logging, testing and evaluation; mathematical modelling; enhanced gas recovery; thermodynamics and phase behaviour, gas-reservoir modelling and simulation; natural gas production engineering; primary and enhanced production from unconventional gas resources, subsurface issues related to coalbed methane, tight gas, shale gas, and hydrate production, formation evaluation; exploration methods, multiphase flow and flow assurance issues, novel processing (e.g., subsea) techniques, raw gas transmission methods, gas processing/LNG technologies, sales gas transmission and storage. The Journal of Natural Gas Science & Engineering will also focus on economical, environmental, management and safety issues related to natural gas production, processing and transportation.