{"title":"储氢系统在氢经济中的作用综述","authors":"T. Amirthan, M.S.A. Perera","doi":"10.1016/j.jngse.2022.104843","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>An economy based on hydrogen is widely regarded as the potential successor of the fossil-fuel-driven present energy sector. One major obstacle in developing the hydrogen economy<span><span> is the suitable storage systems for different applications. This article presents an overview of the role of different storage technologies in successfully developing the hydrogen economy. It reviews the present state of various </span>hydrogen storage systems from the surface and </span></span>underground storage<span><span> methods, their applications, and the associated scientific challenges. The integration of renewable energy in existing energy infrastructure requires developing suitable storage solutions along the energy supply chain. Large-scale seasonal hydrogen storage can be achieved through a subsurface geologic medium such as salt caverns, depleted </span>hydrocarbon reservoirs<span>, aquifers and hard rock caverns<span>. The suitability of the geostructures depends on the desired storage cycles, capacities, and purity of stored hydrogen. The storage of hydrogen for stationary and mobile applications according to end user demands, generally less in capacity and requiring rapid storage cycles, is facilitated by surface storage methods. The physical storage of hydrogen is trapping it in vessels in its different physical states, such as compressed gaseous, cryogenic and cryo-compressed forms. Material-based storage of hydrogen is by adsorbing or absorbing hydrogen using solid-state materials. The performance of surface storage technics is characterized by gravimetric and volumetric densities, storage uptake and release kinetics, the cost involved, and operational safety. The technical insights of each storage technology are presented with recommendations and relevant fields of applications. No storage technic in its ideal conditions can be considered the best fit for all the applications, and each technic requires intense work to become acceptable for </span></span></span></span>energy application.</p></div>","PeriodicalId":372,"journal":{"name":"Journal of Natural Gas Science and Engineering","volume":"108 ","pages":"Article 104843"},"PeriodicalIF":4.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"The role of storage systems in hydrogen economy: A review\",\"authors\":\"T. Amirthan, M.S.A. Perera\",\"doi\":\"10.1016/j.jngse.2022.104843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>An economy based on hydrogen is widely regarded as the potential successor of the fossil-fuel-driven present energy sector. One major obstacle in developing the hydrogen economy<span><span> is the suitable storage systems for different applications. This article presents an overview of the role of different storage technologies in successfully developing the hydrogen economy. It reviews the present state of various </span>hydrogen storage systems from the surface and </span></span>underground storage<span><span> methods, their applications, and the associated scientific challenges. The integration of renewable energy in existing energy infrastructure requires developing suitable storage solutions along the energy supply chain. Large-scale seasonal hydrogen storage can be achieved through a subsurface geologic medium such as salt caverns, depleted </span>hydrocarbon reservoirs<span>, aquifers and hard rock caverns<span>. The suitability of the geostructures depends on the desired storage cycles, capacities, and purity of stored hydrogen. The storage of hydrogen for stationary and mobile applications according to end user demands, generally less in capacity and requiring rapid storage cycles, is facilitated by surface storage methods. The physical storage of hydrogen is trapping it in vessels in its different physical states, such as compressed gaseous, cryogenic and cryo-compressed forms. Material-based storage of hydrogen is by adsorbing or absorbing hydrogen using solid-state materials. The performance of surface storage technics is characterized by gravimetric and volumetric densities, storage uptake and release kinetics, the cost involved, and operational safety. The technical insights of each storage technology are presented with recommendations and relevant fields of applications. No storage technic in its ideal conditions can be considered the best fit for all the applications, and each technic requires intense work to become acceptable for </span></span></span></span>energy application.</p></div>\",\"PeriodicalId\":372,\"journal\":{\"name\":\"Journal of Natural Gas Science and Engineering\",\"volume\":\"108 \",\"pages\":\"Article 104843\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Gas Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875510022004292\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875510022004292","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
The role of storage systems in hydrogen economy: A review
An economy based on hydrogen is widely regarded as the potential successor of the fossil-fuel-driven present energy sector. One major obstacle in developing the hydrogen economy is the suitable storage systems for different applications. This article presents an overview of the role of different storage technologies in successfully developing the hydrogen economy. It reviews the present state of various hydrogen storage systems from the surface and underground storage methods, their applications, and the associated scientific challenges. The integration of renewable energy in existing energy infrastructure requires developing suitable storage solutions along the energy supply chain. Large-scale seasonal hydrogen storage can be achieved through a subsurface geologic medium such as salt caverns, depleted hydrocarbon reservoirs, aquifers and hard rock caverns. The suitability of the geostructures depends on the desired storage cycles, capacities, and purity of stored hydrogen. The storage of hydrogen for stationary and mobile applications according to end user demands, generally less in capacity and requiring rapid storage cycles, is facilitated by surface storage methods. The physical storage of hydrogen is trapping it in vessels in its different physical states, such as compressed gaseous, cryogenic and cryo-compressed forms. Material-based storage of hydrogen is by adsorbing or absorbing hydrogen using solid-state materials. The performance of surface storage technics is characterized by gravimetric and volumetric densities, storage uptake and release kinetics, the cost involved, and operational safety. The technical insights of each storage technology are presented with recommendations and relevant fields of applications. No storage technic in its ideal conditions can be considered the best fit for all the applications, and each technic requires intense work to become acceptable for energy application.
期刊介绍:
The objective of the Journal of Natural Gas Science & Engineering is to bridge the gap between the engineering and the science of natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of natural gas science and engineering from the reservoir to the market.
An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Natural Gas Science & Engineering covers the fields of natural gas exploration, production, processing and transmission in its broadest possible sense. Topics include: origin and accumulation of natural gas; natural gas geochemistry; gas-reservoir engineering; well logging, testing and evaluation; mathematical modelling; enhanced gas recovery; thermodynamics and phase behaviour, gas-reservoir modelling and simulation; natural gas production engineering; primary and enhanced production from unconventional gas resources, subsurface issues related to coalbed methane, tight gas, shale gas, and hydrate production, formation evaluation; exploration methods, multiphase flow and flow assurance issues, novel processing (e.g., subsea) techniques, raw gas transmission methods, gas processing/LNG technologies, sales gas transmission and storage. The Journal of Natural Gas Science & Engineering will also focus on economical, environmental, management and safety issues related to natural gas production, processing and transportation.