Tommy Yunpu Zhao , Michelle P. Lapak , Ranjan Behera , Hanqin Zhao , Maria-Jose Ferrer , Helena E. Hagelin Weaver , Wenyu Huang , Clifford R. Bowers
{"title":"对氢催化醋酸丙烯酯的永久超极化和未反应醋酸丙酯的连续流动非均相加氢","authors":"Tommy Yunpu Zhao , Michelle P. Lapak , Ranjan Behera , Hanqin Zhao , Maria-Jose Ferrer , Helena E. Hagelin Weaver , Wenyu Huang , Clifford R. Bowers","doi":"10.1016/j.jmro.2022.100076","DOIUrl":null,"url":null,"abstract":"<div><p>A novel closed loop, continuous flow (CF) reactor system for parahydrogen enhanced nuclear magnetic resonance (NMR) of liquids via heterogeneous catalysis is introduced which enables recycling of unreacted liquid substrate reactant. This system consists of an HPLC pump, a liquid substrate reservoir incorporating a gas diffuser, an all-metal packed bed catalytic reactor, and an AF-2400 tube-in-tube gas permeable membrane for removal of normal H<sub>2</sub>. Two types of supported metal nanoparticle catalysts were tested: mesoporous silica encapsulated Pt<sub>3</sub>Sn intermetallic nanoparticles and a Rh on anatase TiO<sub>2</sub> support. In the CF hydrogenation of propargyl acetate to allyl acetate, the hyperpolarized signals exhibited stability over 20 min of recirculation, with signal enhancements of up to 626 using 99% p-H<sub>2</sub> and negligible leaching of the catalyst into the flowing solutions. These results demonstrate the practicality of performing systematic optimization of conditions for continuous flow catalysis and polarization transfer to heteronuclei with important implications for biomedical magnetic resonance imaging.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"12 ","pages":"Article 100076"},"PeriodicalIF":2.6240,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Perpetual hyperpolarization of allyl acetate from parahydrogen and continuous flow heterogeneous hydrogenation with recycling of unreacted propargyl acetate\",\"authors\":\"Tommy Yunpu Zhao , Michelle P. Lapak , Ranjan Behera , Hanqin Zhao , Maria-Jose Ferrer , Helena E. Hagelin Weaver , Wenyu Huang , Clifford R. Bowers\",\"doi\":\"10.1016/j.jmro.2022.100076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel closed loop, continuous flow (CF) reactor system for parahydrogen enhanced nuclear magnetic resonance (NMR) of liquids via heterogeneous catalysis is introduced which enables recycling of unreacted liquid substrate reactant. This system consists of an HPLC pump, a liquid substrate reservoir incorporating a gas diffuser, an all-metal packed bed catalytic reactor, and an AF-2400 tube-in-tube gas permeable membrane for removal of normal H<sub>2</sub>. Two types of supported metal nanoparticle catalysts were tested: mesoporous silica encapsulated Pt<sub>3</sub>Sn intermetallic nanoparticles and a Rh on anatase TiO<sub>2</sub> support. In the CF hydrogenation of propargyl acetate to allyl acetate, the hyperpolarized signals exhibited stability over 20 min of recirculation, with signal enhancements of up to 626 using 99% p-H<sub>2</sub> and negligible leaching of the catalyst into the flowing solutions. These results demonstrate the practicality of performing systematic optimization of conditions for continuous flow catalysis and polarization transfer to heteronuclei with important implications for biomedical magnetic resonance imaging.</p></div>\",\"PeriodicalId\":365,\"journal\":{\"name\":\"Journal of Magnetic Resonance Open\",\"volume\":\"12 \",\"pages\":\"Article 100076\"},\"PeriodicalIF\":2.6240,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetic Resonance Open\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666441022000462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441022000462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Perpetual hyperpolarization of allyl acetate from parahydrogen and continuous flow heterogeneous hydrogenation with recycling of unreacted propargyl acetate
A novel closed loop, continuous flow (CF) reactor system for parahydrogen enhanced nuclear magnetic resonance (NMR) of liquids via heterogeneous catalysis is introduced which enables recycling of unreacted liquid substrate reactant. This system consists of an HPLC pump, a liquid substrate reservoir incorporating a gas diffuser, an all-metal packed bed catalytic reactor, and an AF-2400 tube-in-tube gas permeable membrane for removal of normal H2. Two types of supported metal nanoparticle catalysts were tested: mesoporous silica encapsulated Pt3Sn intermetallic nanoparticles and a Rh on anatase TiO2 support. In the CF hydrogenation of propargyl acetate to allyl acetate, the hyperpolarized signals exhibited stability over 20 min of recirculation, with signal enhancements of up to 626 using 99% p-H2 and negligible leaching of the catalyst into the flowing solutions. These results demonstrate the practicality of performing systematic optimization of conditions for continuous flow catalysis and polarization transfer to heteronuclei with important implications for biomedical magnetic resonance imaging.