Xiaochu Wang , Youhong Sun , Saiyu Peng , Yuanqi Wang , Shengli Li
{"title":"孔隙水对泥质淤泥质沉积物中天然气水合物降压的影响","authors":"Xiaochu Wang , Youhong Sun , Saiyu Peng , Yuanqi Wang , Shengli Li","doi":"10.1016/j.jngse.2022.104836","DOIUrl":null,"url":null,"abstract":"<div><p>Marine gas hydrate always occurs in clayey silt sediments partially or fully saturated with water. Pore water is involved in gas hydrate formation and decomposition, which plays an important role in gas recovery from hydrate during depressurization. In this work, the depressurization of methane hydrate in the clayey silt sediments was experimentally investigated in a one-dimensional reactor. The variation of gas production and pressure gradient under the gas-rich and water-rich condition were studied. It was found that the gas production in water-rich environment was much lower than that in gas-rich environment as the movement of hydrate dissociating front is slower in water-rich environment. The permeability of the clayey silt sediments was measured before hydrate formation and after hydrate decomposition, which indicated that there was a large depression in the permeability of the clayey silt sediments after hydrate decomposition, which could be attributed to the hydration swelling of clay minerals with the expansion of diffuse double layer caused by the release of water with lower salinity from gas hydrate dissociation. And the permeability depression of the clayey silt sediments caused by hydrate decomposition was more obvious in water-rich environment, reaching up to ∼50%, and increased with the content of clay minerals. In addition, inorganic salt-based clay stabilizer solution was pre-injected into the clayey silt gas hydrate-bearing sediments before depressurization to mitigate the formation damage during gas hydrate production. The results showed the permeability of the sediments pre-saturated with NH<sub>4</sub>Cl was maintained at ∼75% of the initial values after gas hydrate decomposition as the exchange of Na<sup>+</sup> with NH<sub>4</sub><sup>+</sup> in sediments was proved to decrease the bound water in montmorillonite interlayers by NMR analysis and inhibit the hydration swelling of clay particles.</p></div>","PeriodicalId":372,"journal":{"name":"Journal of Natural Gas Science and Engineering","volume":"108 ","pages":"Article 104836"},"PeriodicalIF":4.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of pore water on the depressurization of gas hydrate in clayey silt sediments\",\"authors\":\"Xiaochu Wang , Youhong Sun , Saiyu Peng , Yuanqi Wang , Shengli Li\",\"doi\":\"10.1016/j.jngse.2022.104836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Marine gas hydrate always occurs in clayey silt sediments partially or fully saturated with water. Pore water is involved in gas hydrate formation and decomposition, which plays an important role in gas recovery from hydrate during depressurization. In this work, the depressurization of methane hydrate in the clayey silt sediments was experimentally investigated in a one-dimensional reactor. The variation of gas production and pressure gradient under the gas-rich and water-rich condition were studied. It was found that the gas production in water-rich environment was much lower than that in gas-rich environment as the movement of hydrate dissociating front is slower in water-rich environment. The permeability of the clayey silt sediments was measured before hydrate formation and after hydrate decomposition, which indicated that there was a large depression in the permeability of the clayey silt sediments after hydrate decomposition, which could be attributed to the hydration swelling of clay minerals with the expansion of diffuse double layer caused by the release of water with lower salinity from gas hydrate dissociation. And the permeability depression of the clayey silt sediments caused by hydrate decomposition was more obvious in water-rich environment, reaching up to ∼50%, and increased with the content of clay minerals. In addition, inorganic salt-based clay stabilizer solution was pre-injected into the clayey silt gas hydrate-bearing sediments before depressurization to mitigate the formation damage during gas hydrate production. The results showed the permeability of the sediments pre-saturated with NH<sub>4</sub>Cl was maintained at ∼75% of the initial values after gas hydrate decomposition as the exchange of Na<sup>+</sup> with NH<sub>4</sub><sup>+</sup> in sediments was proved to decrease the bound water in montmorillonite interlayers by NMR analysis and inhibit the hydration swelling of clay particles.</p></div>\",\"PeriodicalId\":372,\"journal\":{\"name\":\"Journal of Natural Gas Science and Engineering\",\"volume\":\"108 \",\"pages\":\"Article 104836\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Gas Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187551002200422X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187551002200422X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Effect of pore water on the depressurization of gas hydrate in clayey silt sediments
Marine gas hydrate always occurs in clayey silt sediments partially or fully saturated with water. Pore water is involved in gas hydrate formation and decomposition, which plays an important role in gas recovery from hydrate during depressurization. In this work, the depressurization of methane hydrate in the clayey silt sediments was experimentally investigated in a one-dimensional reactor. The variation of gas production and pressure gradient under the gas-rich and water-rich condition were studied. It was found that the gas production in water-rich environment was much lower than that in gas-rich environment as the movement of hydrate dissociating front is slower in water-rich environment. The permeability of the clayey silt sediments was measured before hydrate formation and after hydrate decomposition, which indicated that there was a large depression in the permeability of the clayey silt sediments after hydrate decomposition, which could be attributed to the hydration swelling of clay minerals with the expansion of diffuse double layer caused by the release of water with lower salinity from gas hydrate dissociation. And the permeability depression of the clayey silt sediments caused by hydrate decomposition was more obvious in water-rich environment, reaching up to ∼50%, and increased with the content of clay minerals. In addition, inorganic salt-based clay stabilizer solution was pre-injected into the clayey silt gas hydrate-bearing sediments before depressurization to mitigate the formation damage during gas hydrate production. The results showed the permeability of the sediments pre-saturated with NH4Cl was maintained at ∼75% of the initial values after gas hydrate decomposition as the exchange of Na+ with NH4+ in sediments was proved to decrease the bound water in montmorillonite interlayers by NMR analysis and inhibit the hydration swelling of clay particles.
期刊介绍:
The objective of the Journal of Natural Gas Science & Engineering is to bridge the gap between the engineering and the science of natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of natural gas science and engineering from the reservoir to the market.
An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Natural Gas Science & Engineering covers the fields of natural gas exploration, production, processing and transmission in its broadest possible sense. Topics include: origin and accumulation of natural gas; natural gas geochemistry; gas-reservoir engineering; well logging, testing and evaluation; mathematical modelling; enhanced gas recovery; thermodynamics and phase behaviour, gas-reservoir modelling and simulation; natural gas production engineering; primary and enhanced production from unconventional gas resources, subsurface issues related to coalbed methane, tight gas, shale gas, and hydrate production, formation evaluation; exploration methods, multiphase flow and flow assurance issues, novel processing (e.g., subsea) techniques, raw gas transmission methods, gas processing/LNG technologies, sales gas transmission and storage. The Journal of Natural Gas Science & Engineering will also focus on economical, environmental, management and safety issues related to natural gas production, processing and transportation.