Weiguo Liu , Xuelian Pan , Haijun Wang , Peng Wu , Qingping Li , Yufa He , Yanghui Li
{"title":"水合物重整对海洋沉积物透气性影响的实验研究","authors":"Weiguo Liu , Xuelian Pan , Haijun Wang , Peng Wu , Qingping Li , Yufa He , Yanghui Li","doi":"10.1016/j.jngse.2022.104849","DOIUrl":null,"url":null,"abstract":"<div><p><span>Permeability is a crucial parameter determining methane gas recovery. Hydrate reformation has a significant impact on reservoir permeability during </span>methane hydrate<span><span> (MH) exploitation and it is often ignored. In this paper, the effect of hydrate reformation on gas permeability was investigated by remolded cores with different hydrate saturations and effective stresses. The results show that hydrate reformation exacerbates the heterogeneous distribution and reduces the reservoir permeability. The permeability damage rate (PDR) of hydrate reformation is greater than the hydrate first formation owing to the inhomogeneity of water caused by hydrate decomposition. When hydrate saturation is increased from 22.26% to 40.44%, the PDR range caused by hydrate formation<span> varies from 19.89% to 98.02%. In addition, the permeability after hydrate decomposition decreases with increasing effective stress. When the effective stress is absent or small, the permeability after secondary decomposition is lower than the first decomposition at the same hydrate saturation. However, the opposite is true when the effective stress is reached 3 MPa. Due to the memory effect of MH in marine sediments, the hydrate reformation induction time is shorter and the reformation rate is faster. However, the gas consumption of the hydrate reformation is less than the first, causing lower hydrate saturation. This work supports the exploitation of </span></span>gas hydrate and numerical simulation studies in marine sediments.</span></p></div>","PeriodicalId":372,"journal":{"name":"Journal of Natural Gas Science and Engineering","volume":"108 ","pages":"Article 104849"},"PeriodicalIF":4.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Experimental study on the effect of hydrate reformation on gas permeability of marine sediments\",\"authors\":\"Weiguo Liu , Xuelian Pan , Haijun Wang , Peng Wu , Qingping Li , Yufa He , Yanghui Li\",\"doi\":\"10.1016/j.jngse.2022.104849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Permeability is a crucial parameter determining methane gas recovery. Hydrate reformation has a significant impact on reservoir permeability during </span>methane hydrate<span><span> (MH) exploitation and it is often ignored. In this paper, the effect of hydrate reformation on gas permeability was investigated by remolded cores with different hydrate saturations and effective stresses. The results show that hydrate reformation exacerbates the heterogeneous distribution and reduces the reservoir permeability. The permeability damage rate (PDR) of hydrate reformation is greater than the hydrate first formation owing to the inhomogeneity of water caused by hydrate decomposition. When hydrate saturation is increased from 22.26% to 40.44%, the PDR range caused by hydrate formation<span> varies from 19.89% to 98.02%. In addition, the permeability after hydrate decomposition decreases with increasing effective stress. When the effective stress is absent or small, the permeability after secondary decomposition is lower than the first decomposition at the same hydrate saturation. However, the opposite is true when the effective stress is reached 3 MPa. Due to the memory effect of MH in marine sediments, the hydrate reformation induction time is shorter and the reformation rate is faster. However, the gas consumption of the hydrate reformation is less than the first, causing lower hydrate saturation. This work supports the exploitation of </span></span>gas hydrate and numerical simulation studies in marine sediments.</span></p></div>\",\"PeriodicalId\":372,\"journal\":{\"name\":\"Journal of Natural Gas Science and Engineering\",\"volume\":\"108 \",\"pages\":\"Article 104849\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Gas Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875510022004358\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875510022004358","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental study on the effect of hydrate reformation on gas permeability of marine sediments
Permeability is a crucial parameter determining methane gas recovery. Hydrate reformation has a significant impact on reservoir permeability during methane hydrate (MH) exploitation and it is often ignored. In this paper, the effect of hydrate reformation on gas permeability was investigated by remolded cores with different hydrate saturations and effective stresses. The results show that hydrate reformation exacerbates the heterogeneous distribution and reduces the reservoir permeability. The permeability damage rate (PDR) of hydrate reformation is greater than the hydrate first formation owing to the inhomogeneity of water caused by hydrate decomposition. When hydrate saturation is increased from 22.26% to 40.44%, the PDR range caused by hydrate formation varies from 19.89% to 98.02%. In addition, the permeability after hydrate decomposition decreases with increasing effective stress. When the effective stress is absent or small, the permeability after secondary decomposition is lower than the first decomposition at the same hydrate saturation. However, the opposite is true when the effective stress is reached 3 MPa. Due to the memory effect of MH in marine sediments, the hydrate reformation induction time is shorter and the reformation rate is faster. However, the gas consumption of the hydrate reformation is less than the first, causing lower hydrate saturation. This work supports the exploitation of gas hydrate and numerical simulation studies in marine sediments.
期刊介绍:
The objective of the Journal of Natural Gas Science & Engineering is to bridge the gap between the engineering and the science of natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of natural gas science and engineering from the reservoir to the market.
An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Natural Gas Science & Engineering covers the fields of natural gas exploration, production, processing and transmission in its broadest possible sense. Topics include: origin and accumulation of natural gas; natural gas geochemistry; gas-reservoir engineering; well logging, testing and evaluation; mathematical modelling; enhanced gas recovery; thermodynamics and phase behaviour, gas-reservoir modelling and simulation; natural gas production engineering; primary and enhanced production from unconventional gas resources, subsurface issues related to coalbed methane, tight gas, shale gas, and hydrate production, formation evaluation; exploration methods, multiphase flow and flow assurance issues, novel processing (e.g., subsea) techniques, raw gas transmission methods, gas processing/LNG technologies, sales gas transmission and storage. The Journal of Natural Gas Science & Engineering will also focus on economical, environmental, management and safety issues related to natural gas production, processing and transportation.