Mi Chen , Xiaobo Zheng , Zhiwei Liu , Qiaoling Zheng , Bohan Zheng
{"title":"热挤压在提高铝空气电池负极低成本商用铝合金电化学性能中的作用","authors":"Mi Chen , Xiaobo Zheng , Zhiwei Liu , Qiaoling Zheng , Bohan Zheng","doi":"10.1016/j.jelechem.2022.116127","DOIUrl":null,"url":null,"abstract":"<div><p>Hot extrusion (HE) was applied in the treatment of low-cost commercial Al6063 alloy containing impurity iron (Fe) element (0.12 wt%) with the aim of decreasing the self-corrosion and optimizing the discharge performance of Al6063 alloy as an anode for Al-air battery. Experimental results showed that HE effectively refined the α-Al grains as well as the coarse AlFeSi phase along the grain boundaries and further led to the intragranular distribution of AlFeSi phase. The electrochemical tests proved that the corrosion resistance of Al alloy after HE treatment was enhanced. Combined with the surface analysis of Al anode after discharge, the immersion test suggested that the corrosion pits were prone to occur near the AlFeSi phase rather than at the grain boundaries and the distribution of AlFeSi phase at grain boundaries could accelerate the corrosion process, indicating that the HE induced improvement in corrosion resistance of Al alloy was attributed to fragmentation of AlFeSi phase and its distribution within grains from grain boundaries. Furthermore, owing to the increased grain boundaries and delayed corrosion process, the average discharge potential of Al anode increased from 1.1737 V to 1.1914 V while the energy density as well as the anode efficiency of which were improved by 65.39% and 62.95%, respectively. This research provided an effective approach to the expansion usage of low-cost commercial Al alloys as the potential anode materials for Al-air batteries.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"909 ","pages":"Article 116127"},"PeriodicalIF":4.5000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of hot extrusion in improving electrochemical properties of low-cost commercial Al alloy as anode for Al-air battery\",\"authors\":\"Mi Chen , Xiaobo Zheng , Zhiwei Liu , Qiaoling Zheng , Bohan Zheng\",\"doi\":\"10.1016/j.jelechem.2022.116127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hot extrusion (HE) was applied in the treatment of low-cost commercial Al6063 alloy containing impurity iron (Fe) element (0.12 wt%) with the aim of decreasing the self-corrosion and optimizing the discharge performance of Al6063 alloy as an anode for Al-air battery. Experimental results showed that HE effectively refined the α-Al grains as well as the coarse AlFeSi phase along the grain boundaries and further led to the intragranular distribution of AlFeSi phase. The electrochemical tests proved that the corrosion resistance of Al alloy after HE treatment was enhanced. Combined with the surface analysis of Al anode after discharge, the immersion test suggested that the corrosion pits were prone to occur near the AlFeSi phase rather than at the grain boundaries and the distribution of AlFeSi phase at grain boundaries could accelerate the corrosion process, indicating that the HE induced improvement in corrosion resistance of Al alloy was attributed to fragmentation of AlFeSi phase and its distribution within grains from grain boundaries. Furthermore, owing to the increased grain boundaries and delayed corrosion process, the average discharge potential of Al anode increased from 1.1737 V to 1.1914 V while the energy density as well as the anode efficiency of which were improved by 65.39% and 62.95%, respectively. This research provided an effective approach to the expansion usage of low-cost commercial Al alloys as the potential anode materials for Al-air batteries.</p></div>\",\"PeriodicalId\":50545,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"909 \",\"pages\":\"Article 116127\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665722001199\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665722001199","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
The role of hot extrusion in improving electrochemical properties of low-cost commercial Al alloy as anode for Al-air battery
Hot extrusion (HE) was applied in the treatment of low-cost commercial Al6063 alloy containing impurity iron (Fe) element (0.12 wt%) with the aim of decreasing the self-corrosion and optimizing the discharge performance of Al6063 alloy as an anode for Al-air battery. Experimental results showed that HE effectively refined the α-Al grains as well as the coarse AlFeSi phase along the grain boundaries and further led to the intragranular distribution of AlFeSi phase. The electrochemical tests proved that the corrosion resistance of Al alloy after HE treatment was enhanced. Combined with the surface analysis of Al anode after discharge, the immersion test suggested that the corrosion pits were prone to occur near the AlFeSi phase rather than at the grain boundaries and the distribution of AlFeSi phase at grain boundaries could accelerate the corrosion process, indicating that the HE induced improvement in corrosion resistance of Al alloy was attributed to fragmentation of AlFeSi phase and its distribution within grains from grain boundaries. Furthermore, owing to the increased grain boundaries and delayed corrosion process, the average discharge potential of Al anode increased from 1.1737 V to 1.1914 V while the energy density as well as the anode efficiency of which were improved by 65.39% and 62.95%, respectively. This research provided an effective approach to the expansion usage of low-cost commercial Al alloys as the potential anode materials for Al-air batteries.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.