{"title":"天冬酰胺连接的糖蛋白低聚糖的生物合成途径。","authors":"R J Staneloni, L F Leloir","doi":"10.1080/10409238209104422","DOIUrl":null,"url":null,"abstract":"<p><p>This review deals with the structure and addition of the different types of oligosaccharides to asparagine residues in proteins. This process occurs in several steps, first an oligosaccharide which contains N-acetylglucosamine mannose and glucose is built up joined to dolichyl diphosphate. The oligosaccharide is then transferred to a polypeptide chain, loses its glucose, and is modified by removal of some monosaccharides and addition of others giving rise to a variety of saccharides.</p>","PeriodicalId":75744,"journal":{"name":"CRC critical reviews in biochemistry","volume":"12 4","pages":"289-326"},"PeriodicalIF":0.0000,"publicationDate":"1982-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10409238209104422","citationCount":"70","resultStr":"{\"title\":\"The biosynthetic pathway of the asparagine-linked oligosaccharides of glycoproteins.\",\"authors\":\"R J Staneloni, L F Leloir\",\"doi\":\"10.1080/10409238209104422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review deals with the structure and addition of the different types of oligosaccharides to asparagine residues in proteins. This process occurs in several steps, first an oligosaccharide which contains N-acetylglucosamine mannose and glucose is built up joined to dolichyl diphosphate. The oligosaccharide is then transferred to a polypeptide chain, loses its glucose, and is modified by removal of some monosaccharides and addition of others giving rise to a variety of saccharides.</p>\",\"PeriodicalId\":75744,\"journal\":{\"name\":\"CRC critical reviews in biochemistry\",\"volume\":\"12 4\",\"pages\":\"289-326\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10409238209104422\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CRC critical reviews in biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10409238209104422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRC critical reviews in biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10409238209104422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The biosynthetic pathway of the asparagine-linked oligosaccharides of glycoproteins.
This review deals with the structure and addition of the different types of oligosaccharides to asparagine residues in proteins. This process occurs in several steps, first an oligosaccharide which contains N-acetylglucosamine mannose and glucose is built up joined to dolichyl diphosphate. The oligosaccharide is then transferred to a polypeptide chain, loses its glucose, and is modified by removal of some monosaccharides and addition of others giving rise to a variety of saccharides.