{"title":"缺氧性失眠:一氧化碳与环境适应的影响。","authors":"J R Pappenheimer","doi":"10.1152/jappl.1984.57.6.1696","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia causes severe disruption of both rapid-eye-movement (REM) and non-REM (NREM) sleep. Experiments were performed on rats to determine if hypoxic insomnia is mediated by peripheral chemoreceptors and if normal sleep is restored during acclimatization to low O2. Novel methods were devised to measure distribution of amplitudes of cortical slow waves during NREM sleep and to detect REM sleep from the ratio of amplitudes of theta-to delta-frequency bands in the hippocampal electroencephalogram (EEG). Acute exposure of rats to 10.5% O2 (5,030 m altitude equivalent) during daylight hours virtually abolished REM sleep and shifted the distribution of amplitudes of slow-wave sleep EEG toward awake values. Similar disruption of sleep occurred during inhalation of 0.05% CO with steady-state carboxyhemoglobin of approximately 35%. Respiratory rate and alveolar ventilation were greatly increased by 10.5% O2 but were unaffected by CO. Therefore, hypoxic disruption of sleep was not mediated by peripheral chemoreceptors regulating breathing. Partial recovery of sleep occurred after 1-2 wk of hypoxia, but both REM and NREM were still subnormal after 1 mo. Decreased intensity of NREM sleep during hypoxia, measured by amplitude of cortical slow waves, may explain the disparity between subjective complaints of insomnia at altitude and evaluations of sleep by direct observation or by conventional EEG. Loss of appetite, loss of weight, irritability, and other symptoms of altitude sickness may be related to hypoxic insomnia.</p>","PeriodicalId":15258,"journal":{"name":"Journal of applied physiology: respiratory, environmental and exercise physiology","volume":"57 6","pages":"1696-703"},"PeriodicalIF":0.0000,"publicationDate":"1984-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/jappl.1984.57.6.1696","citationCount":"19","resultStr":"{\"title\":\"Hypoxic insomnia: effects of carbon monoxide and acclimatization.\",\"authors\":\"J R Pappenheimer\",\"doi\":\"10.1152/jappl.1984.57.6.1696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypoxia causes severe disruption of both rapid-eye-movement (REM) and non-REM (NREM) sleep. Experiments were performed on rats to determine if hypoxic insomnia is mediated by peripheral chemoreceptors and if normal sleep is restored during acclimatization to low O2. Novel methods were devised to measure distribution of amplitudes of cortical slow waves during NREM sleep and to detect REM sleep from the ratio of amplitudes of theta-to delta-frequency bands in the hippocampal electroencephalogram (EEG). Acute exposure of rats to 10.5% O2 (5,030 m altitude equivalent) during daylight hours virtually abolished REM sleep and shifted the distribution of amplitudes of slow-wave sleep EEG toward awake values. Similar disruption of sleep occurred during inhalation of 0.05% CO with steady-state carboxyhemoglobin of approximately 35%. Respiratory rate and alveolar ventilation were greatly increased by 10.5% O2 but were unaffected by CO. Therefore, hypoxic disruption of sleep was not mediated by peripheral chemoreceptors regulating breathing. Partial recovery of sleep occurred after 1-2 wk of hypoxia, but both REM and NREM were still subnormal after 1 mo. Decreased intensity of NREM sleep during hypoxia, measured by amplitude of cortical slow waves, may explain the disparity between subjective complaints of insomnia at altitude and evaluations of sleep by direct observation or by conventional EEG. Loss of appetite, loss of weight, irritability, and other symptoms of altitude sickness may be related to hypoxic insomnia.</p>\",\"PeriodicalId\":15258,\"journal\":{\"name\":\"Journal of applied physiology: respiratory, environmental and exercise physiology\",\"volume\":\"57 6\",\"pages\":\"1696-703\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1152/jappl.1984.57.6.1696\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied physiology: respiratory, environmental and exercise physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/jappl.1984.57.6.1696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology: respiratory, environmental and exercise physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/jappl.1984.57.6.1696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hypoxic insomnia: effects of carbon monoxide and acclimatization.
Hypoxia causes severe disruption of both rapid-eye-movement (REM) and non-REM (NREM) sleep. Experiments were performed on rats to determine if hypoxic insomnia is mediated by peripheral chemoreceptors and if normal sleep is restored during acclimatization to low O2. Novel methods were devised to measure distribution of amplitudes of cortical slow waves during NREM sleep and to detect REM sleep from the ratio of amplitudes of theta-to delta-frequency bands in the hippocampal electroencephalogram (EEG). Acute exposure of rats to 10.5% O2 (5,030 m altitude equivalent) during daylight hours virtually abolished REM sleep and shifted the distribution of amplitudes of slow-wave sleep EEG toward awake values. Similar disruption of sleep occurred during inhalation of 0.05% CO with steady-state carboxyhemoglobin of approximately 35%. Respiratory rate and alveolar ventilation were greatly increased by 10.5% O2 but were unaffected by CO. Therefore, hypoxic disruption of sleep was not mediated by peripheral chemoreceptors regulating breathing. Partial recovery of sleep occurred after 1-2 wk of hypoxia, but both REM and NREM were still subnormal after 1 mo. Decreased intensity of NREM sleep during hypoxia, measured by amplitude of cortical slow waves, may explain the disparity between subjective complaints of insomnia at altitude and evaluations of sleep by direct observation or by conventional EEG. Loss of appetite, loss of weight, irritability, and other symptoms of altitude sickness may be related to hypoxic insomnia.