静呼吸法与喘气法测定特定气道电导。

W S Krell, K P Agrawal, R E Hyatt
{"title":"静呼吸法与喘气法测定特定气道电导。","authors":"W S Krell,&nbsp;K P Agrawal,&nbsp;R E Hyatt","doi":"10.1152/jappl.1984.57.6.1917","DOIUrl":null,"url":null,"abstract":"<p><p>Specific airway conductance (sGaw) was measured during quiet breathing and during panting in 21 normal subjects and 10 patients with obstructive lung disease. The direct method used does not require measuring thoracic gas volume (TGV). Coefficients of variation were 5.5% for panting and 5.1% for quiet breathing. Interobserver variability was 4.7% in the quiet-breathing method and 6.3% in the panting method. The two methods gave equivalent results for sGaw. A slightly greater sGaw was found by the panting method in normal subjects with the highest sGaw values, probably due to widening of the oropharynx-glottis during panting. In six normal subjects studied for intrasubject variability over time, no significant diurnal or day-to-day variability was seen by either method. We conclude that the quiet-breathing method is a simple valid means of determining sGaw and utilizes a physiological respiratory maneuver. Obviation of the need to measure TGV is advantageous. Results are equivalent to those of the panting method and variability is similar.</p>","PeriodicalId":15258,"journal":{"name":"Journal of applied physiology: respiratory, environmental and exercise physiology","volume":"57 6","pages":"1917-22"},"PeriodicalIF":0.0000,"publicationDate":"1984-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/jappl.1984.57.6.1917","citationCount":"35","resultStr":"{\"title\":\"Quiet-breathing vs. panting methods for determination of specific airway conductance.\",\"authors\":\"W S Krell,&nbsp;K P Agrawal,&nbsp;R E Hyatt\",\"doi\":\"10.1152/jappl.1984.57.6.1917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Specific airway conductance (sGaw) was measured during quiet breathing and during panting in 21 normal subjects and 10 patients with obstructive lung disease. The direct method used does not require measuring thoracic gas volume (TGV). Coefficients of variation were 5.5% for panting and 5.1% for quiet breathing. Interobserver variability was 4.7% in the quiet-breathing method and 6.3% in the panting method. The two methods gave equivalent results for sGaw. A slightly greater sGaw was found by the panting method in normal subjects with the highest sGaw values, probably due to widening of the oropharynx-glottis during panting. In six normal subjects studied for intrasubject variability over time, no significant diurnal or day-to-day variability was seen by either method. We conclude that the quiet-breathing method is a simple valid means of determining sGaw and utilizes a physiological respiratory maneuver. Obviation of the need to measure TGV is advantageous. Results are equivalent to those of the panting method and variability is similar.</p>\",\"PeriodicalId\":15258,\"journal\":{\"name\":\"Journal of applied physiology: respiratory, environmental and exercise physiology\",\"volume\":\"57 6\",\"pages\":\"1917-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1152/jappl.1984.57.6.1917\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied physiology: respiratory, environmental and exercise physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/jappl.1984.57.6.1917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology: respiratory, environmental and exercise physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/jappl.1984.57.6.1917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

测定了21例正常受试者和10例阻塞性肺疾病患者在安静呼吸和喘气时的特定气道电导(sGaw)。使用的直接方法不需要测量胸部气体体积(TGV)。喘息的变异系数为5.5%,安静呼吸的变异系数为5.1%。观察者间差异在静呼吸法中为4.7%,在喘气法中为6.3%。两种方法对sGaw的计算结果相当。喘气法发现正常受试者的sGaw略大,sGaw值最高,可能是由于喘气时口咽声门扩大。在6名正常受试者中,研究了受试者内部随时间的变化,两种方法都没有发现明显的日或日变化。我们的结论是,静呼吸法是一种简单有效的方法来确定sGaw和利用生理呼吸操作。避免需要测量TGV是有利的。结果与喘息法相当,变异性相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quiet-breathing vs. panting methods for determination of specific airway conductance.

Specific airway conductance (sGaw) was measured during quiet breathing and during panting in 21 normal subjects and 10 patients with obstructive lung disease. The direct method used does not require measuring thoracic gas volume (TGV). Coefficients of variation were 5.5% for panting and 5.1% for quiet breathing. Interobserver variability was 4.7% in the quiet-breathing method and 6.3% in the panting method. The two methods gave equivalent results for sGaw. A slightly greater sGaw was found by the panting method in normal subjects with the highest sGaw values, probably due to widening of the oropharynx-glottis during panting. In six normal subjects studied for intrasubject variability over time, no significant diurnal or day-to-day variability was seen by either method. We conclude that the quiet-breathing method is a simple valid means of determining sGaw and utilizes a physiological respiratory maneuver. Obviation of the need to measure TGV is advantageous. Results are equivalent to those of the panting method and variability is similar.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信