{"title":"兔心肌肌浆网与1-氟和1,5-二氟- 2,4-二硝基苯的反应性。","authors":"G Bailin","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Sarcoplasmic reticulum preparations from rabbit cardiac and fast skeletal muscle react differentially with low concentrations of 1-fluoro- and 1,5-difluoro-2,4-dinitrobenzene. Dinitrophenylation of cardiac sarcoplasmic reticulum by 1-fluoro-2,4-dinitrobenzene is not affected by Ca2+ and is limited to the lipoprotein-lipid region. This contrasts sharply with the predominant Ca2+-dependent dinitrophenylation of the ATPase protein of rabbit skeletal sarcoplasmic reticulum by this reagent. Formation of non-serial high mol. wt. oligomers by 1,5-difluoro-2,4-dinitrobenzene is significantly greater in cardiac than in skeletal vesicles. Substrate MgATP2- does not protect rabbit cardiac sarcoplasmic reticulum ATPase activity or Ca2+ uptake from dinitrophenylation when monofunctional and bifunctional reagents are used. Chemical differences in the overall structure of the two kinds of membrane preparations can be ascertained from a comparison of the effects of Ca2+ and MgATP2- on the reactivity of these reagents.</p>","PeriodicalId":20124,"journal":{"name":"Physiological chemistry and physics","volume":"13 2","pages":"121-7"},"PeriodicalIF":0.0000,"publicationDate":"1981-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactivity of sarcoplasmic reticulum from rabbit cardiac muscle with 1-fluoro- and 1,5-difluoro- 2,4-dinitrobenzene.\",\"authors\":\"G Bailin\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sarcoplasmic reticulum preparations from rabbit cardiac and fast skeletal muscle react differentially with low concentrations of 1-fluoro- and 1,5-difluoro-2,4-dinitrobenzene. Dinitrophenylation of cardiac sarcoplasmic reticulum by 1-fluoro-2,4-dinitrobenzene is not affected by Ca2+ and is limited to the lipoprotein-lipid region. This contrasts sharply with the predominant Ca2+-dependent dinitrophenylation of the ATPase protein of rabbit skeletal sarcoplasmic reticulum by this reagent. Formation of non-serial high mol. wt. oligomers by 1,5-difluoro-2,4-dinitrobenzene is significantly greater in cardiac than in skeletal vesicles. Substrate MgATP2- does not protect rabbit cardiac sarcoplasmic reticulum ATPase activity or Ca2+ uptake from dinitrophenylation when monofunctional and bifunctional reagents are used. Chemical differences in the overall structure of the two kinds of membrane preparations can be ascertained from a comparison of the effects of Ca2+ and MgATP2- on the reactivity of these reagents.</p>\",\"PeriodicalId\":20124,\"journal\":{\"name\":\"Physiological chemistry and physics\",\"volume\":\"13 2\",\"pages\":\"121-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological chemistry and physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological chemistry and physics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reactivity of sarcoplasmic reticulum from rabbit cardiac muscle with 1-fluoro- and 1,5-difluoro- 2,4-dinitrobenzene.
Sarcoplasmic reticulum preparations from rabbit cardiac and fast skeletal muscle react differentially with low concentrations of 1-fluoro- and 1,5-difluoro-2,4-dinitrobenzene. Dinitrophenylation of cardiac sarcoplasmic reticulum by 1-fluoro-2,4-dinitrobenzene is not affected by Ca2+ and is limited to the lipoprotein-lipid region. This contrasts sharply with the predominant Ca2+-dependent dinitrophenylation of the ATPase protein of rabbit skeletal sarcoplasmic reticulum by this reagent. Formation of non-serial high mol. wt. oligomers by 1,5-difluoro-2,4-dinitrobenzene is significantly greater in cardiac than in skeletal vesicles. Substrate MgATP2- does not protect rabbit cardiac sarcoplasmic reticulum ATPase activity or Ca2+ uptake from dinitrophenylation when monofunctional and bifunctional reagents are used. Chemical differences in the overall structure of the two kinds of membrane preparations can be ascertained from a comparison of the effects of Ca2+ and MgATP2- on the reactivity of these reagents.