{"title":"红红螺旋菌的捕光多肽。1 .红红螺旋藻s1和无类胡萝卜素突变体G-9+第二光集多肽B 880- β (B 870- β)的氨基酸序列。无类胡萝卜素突变体G-9+。","authors":"R A Brunisholz, F Suter, H Zuber","doi":"10.1515/bchm2.1984.365.2.675","DOIUrl":null,"url":null,"abstract":"<p><p>The light-harvesting complex B 880 from Rhodospirillum rubrum S 1 (wild type) and B 870 from the carotenoidless mutant G-9+ was shown to consist mainly of an organic solvent-(chloroform/methanol-) soluble and an organic solvent-insoluble polypeptide. The isolation and separation of these two low-molecular-mass polypeptides (Mr 6101 and Mr 6079) were achieved by a two-step extraction procedure of chromatophores using in the first step chloroform/methanol containing 0.1M ammonium acetate. Following Sephadex LH-60 chromatography of this first extract a light-harvesting polypeptide (B 870-alpha) was isolated and its complete amino acid sequence was determined (R. Brunisholz et al. (1981) FEBS Lett. 129/1, 150-154, B 880-alpha: G. Gogel et al. (1983) Biochim. Biophys. Acta 746, 32-39). Upon reextraction of the chromatophore pellet with chloroform/methanol/ammonium acetate containing in addition acetic acid a second low-molecular-mass polypeptide (B 880-beta of B 870-beta) was generated. The complete amino acid sequences of the chloroform/methanol-insoluble light-harvesting polypeptide of Rs. rubrum S 1 (B 880-beta) and of Rs. rubrum G-9+ (B 870-beta) were determined. They are identical and consist of 54 amino acid residues. The conserved histidine residue within the hydrophobic stretch raises more evidence for ligand complexation of bacteriochlorophyll to this specific histidine residue which therefore possibly plays the key role in pigment-protein interactions. Both polypeptides (B 880-alpha and B 880-beta) are part of the light-harvesting complex B 880 in an apparent ratio of 1:1. Based on the primary structure data a possible arrangement of both light-harvesting polypeptides within the membrane will be discussed.</p>","PeriodicalId":13015,"journal":{"name":"Hoppe-Seyler's Zeitschrift fur physiologische Chemie","volume":"365 7","pages":"675-88"},"PeriodicalIF":0.0000,"publicationDate":"1984-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bchm2.1984.365.2.675","citationCount":"75","resultStr":"{\"title\":\"The light-harvesting polypeptides of Rhodospirillum rubrum. I. The amino-acid sequence of the second light-harvestng polypeptide B 880-beta (B 870-beta) of Rhodospirillum rubrum S 1 and the carotenoidless mutant G-9+. carotenoidless mutant G-9+.\",\"authors\":\"R A Brunisholz, F Suter, H Zuber\",\"doi\":\"10.1515/bchm2.1984.365.2.675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The light-harvesting complex B 880 from Rhodospirillum rubrum S 1 (wild type) and B 870 from the carotenoidless mutant G-9+ was shown to consist mainly of an organic solvent-(chloroform/methanol-) soluble and an organic solvent-insoluble polypeptide. The isolation and separation of these two low-molecular-mass polypeptides (Mr 6101 and Mr 6079) were achieved by a two-step extraction procedure of chromatophores using in the first step chloroform/methanol containing 0.1M ammonium acetate. Following Sephadex LH-60 chromatography of this first extract a light-harvesting polypeptide (B 870-alpha) was isolated and its complete amino acid sequence was determined (R. Brunisholz et al. (1981) FEBS Lett. 129/1, 150-154, B 880-alpha: G. Gogel et al. (1983) Biochim. Biophys. Acta 746, 32-39). Upon reextraction of the chromatophore pellet with chloroform/methanol/ammonium acetate containing in addition acetic acid a second low-molecular-mass polypeptide (B 880-beta of B 870-beta) was generated. The complete amino acid sequences of the chloroform/methanol-insoluble light-harvesting polypeptide of Rs. rubrum S 1 (B 880-beta) and of Rs. rubrum G-9+ (B 870-beta) were determined. They are identical and consist of 54 amino acid residues. The conserved histidine residue within the hydrophobic stretch raises more evidence for ligand complexation of bacteriochlorophyll to this specific histidine residue which therefore possibly plays the key role in pigment-protein interactions. Both polypeptides (B 880-alpha and B 880-beta) are part of the light-harvesting complex B 880 in an apparent ratio of 1:1. Based on the primary structure data a possible arrangement of both light-harvesting polypeptides within the membrane will be discussed.</p>\",\"PeriodicalId\":13015,\"journal\":{\"name\":\"Hoppe-Seyler's Zeitschrift fur physiologische Chemie\",\"volume\":\"365 7\",\"pages\":\"675-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/bchm2.1984.365.2.675\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hoppe-Seyler's Zeitschrift fur physiologische Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bchm2.1984.365.2.675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hoppe-Seyler's Zeitschrift fur physiologische Chemie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bchm2.1984.365.2.675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75
摘要
从红红螺旋藻s1(野生型)和无胡萝卜素突变体G-9+中分离到的b880和b870主要由有机溶剂-(氯仿/甲醇-)可溶性和有机溶剂-不溶性多肽组成。这两个低分子质量多肽(mr6101和mr6079)的分离采用两步萃取的方法,第一步用含0.1M乙酸铵的氯仿/甲醇萃取色谱团。采用Sephadex LH-60层析对第一个提取物进行分离,并确定其完整的氨基酸序列(R. Brunisholz et al. (1981) FEBS Lett. 129/ 1,150 -154, B 880-alpha: G. Gogel et al. (1983) biochem。Biophys。学报,746,32-39)。用含有乙酸的氯仿/甲醇/乙酸铵对染色质球团进行再萃取,得到第二个低分子质量多肽(b870 - β中的b880 - β)。测定了红豆杉s1 (B 880- β)和红豆杉G-9+ (B 870- β)氯仿/甲醇不溶性捕光多肽的完整氨基酸序列。它们是相同的,由54个氨基酸残基组成。疏水拉伸中保守的组氨酸残基为细菌叶绿素与特定组氨酸残基的配体络合提供了更多证据,因此可能在色素-蛋白质相互作用中起关键作用。这两种多肽(b880 - α和b880 - β)都是光收集复合物b880的一部分,其表观比例为1:1。基于初步的结构数据,我们将讨论两种捕光多肽在膜内的可能排列。
The light-harvesting polypeptides of Rhodospirillum rubrum. I. The amino-acid sequence of the second light-harvestng polypeptide B 880-beta (B 870-beta) of Rhodospirillum rubrum S 1 and the carotenoidless mutant G-9+. carotenoidless mutant G-9+.
The light-harvesting complex B 880 from Rhodospirillum rubrum S 1 (wild type) and B 870 from the carotenoidless mutant G-9+ was shown to consist mainly of an organic solvent-(chloroform/methanol-) soluble and an organic solvent-insoluble polypeptide. The isolation and separation of these two low-molecular-mass polypeptides (Mr 6101 and Mr 6079) were achieved by a two-step extraction procedure of chromatophores using in the first step chloroform/methanol containing 0.1M ammonium acetate. Following Sephadex LH-60 chromatography of this first extract a light-harvesting polypeptide (B 870-alpha) was isolated and its complete amino acid sequence was determined (R. Brunisholz et al. (1981) FEBS Lett. 129/1, 150-154, B 880-alpha: G. Gogel et al. (1983) Biochim. Biophys. Acta 746, 32-39). Upon reextraction of the chromatophore pellet with chloroform/methanol/ammonium acetate containing in addition acetic acid a second low-molecular-mass polypeptide (B 880-beta of B 870-beta) was generated. The complete amino acid sequences of the chloroform/methanol-insoluble light-harvesting polypeptide of Rs. rubrum S 1 (B 880-beta) and of Rs. rubrum G-9+ (B 870-beta) were determined. They are identical and consist of 54 amino acid residues. The conserved histidine residue within the hydrophobic stretch raises more evidence for ligand complexation of bacteriochlorophyll to this specific histidine residue which therefore possibly plays the key role in pigment-protein interactions. Both polypeptides (B 880-alpha and B 880-beta) are part of the light-harvesting complex B 880 in an apparent ratio of 1:1. Based on the primary structure data a possible arrangement of both light-harvesting polypeptides within the membrane will be discussed.