G Horneck, H Bücker, K Dose, K D Martens, H D Mennigmann, G Reitz, H Requardt, P Weber
{"title":"太空中的光生物学:太空实验室一号的实验。","authors":"G Horneck, H Bücker, K Dose, K D Martens, H D Mennigmann, G Reitz, H Requardt, P Weber","doi":"10.1007/BF00933739","DOIUrl":null,"url":null,"abstract":"<p><p>The joint European/US Spacelab Mission I, scheduled for October 1983 for a 9 day lasting Earth-orbiting flight, provides a laboratory system for various disciplines of science, including exobiology. On the pallet, in the experiment ES 029 \"Microorganisms and Biomolecules in Space Hard Environment\" 316 dry samples of Bacillus subtilis spores will be exposed to space vacuum and/or selected wavelenghs of solar UV radiation. After recovery action spectra of inactivation, mutation induction, reparability and photochemical damage in DNA and protein will be determined. The results will contribute to the understanding of the mechanism of the increased UV sensitivity of bacterial spores in vacuo and to a better assessment of the chance of survival of resistant life forms in space and of interplanetary transfer of life.</p>","PeriodicalId":76288,"journal":{"name":"Origins of life","volume":"14 1-4","pages":"825-32"},"PeriodicalIF":0.0000,"publicationDate":"1984-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF00933739","citationCount":"3","resultStr":"{\"title\":\"Photobiology in space: an experiment on Spacelab I.\",\"authors\":\"G Horneck, H Bücker, K Dose, K D Martens, H D Mennigmann, G Reitz, H Requardt, P Weber\",\"doi\":\"10.1007/BF00933739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The joint European/US Spacelab Mission I, scheduled for October 1983 for a 9 day lasting Earth-orbiting flight, provides a laboratory system for various disciplines of science, including exobiology. On the pallet, in the experiment ES 029 \\\"Microorganisms and Biomolecules in Space Hard Environment\\\" 316 dry samples of Bacillus subtilis spores will be exposed to space vacuum and/or selected wavelenghs of solar UV radiation. After recovery action spectra of inactivation, mutation induction, reparability and photochemical damage in DNA and protein will be determined. The results will contribute to the understanding of the mechanism of the increased UV sensitivity of bacterial spores in vacuo and to a better assessment of the chance of survival of resistant life forms in space and of interplanetary transfer of life.</p>\",\"PeriodicalId\":76288,\"journal\":{\"name\":\"Origins of life\",\"volume\":\"14 1-4\",\"pages\":\"825-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/BF00933739\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Origins of life\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/BF00933739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Origins of life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF00933739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photobiology in space: an experiment on Spacelab I.
The joint European/US Spacelab Mission I, scheduled for October 1983 for a 9 day lasting Earth-orbiting flight, provides a laboratory system for various disciplines of science, including exobiology. On the pallet, in the experiment ES 029 "Microorganisms and Biomolecules in Space Hard Environment" 316 dry samples of Bacillus subtilis spores will be exposed to space vacuum and/or selected wavelenghs of solar UV radiation. After recovery action spectra of inactivation, mutation induction, reparability and photochemical damage in DNA and protein will be determined. The results will contribute to the understanding of the mechanism of the increased UV sensitivity of bacterial spores in vacuo and to a better assessment of the chance of survival of resistant life forms in space and of interplanetary transfer of life.