Yu. S. Demidova , E.V. Suslov , I.L. Simakova , E.S. Mozhajcev , D.V. Korchagina , K.P. Volcho , N.F. Salakhutdinov , A. Simakov , D. Yu. Murzin
{"title":"分子加氢法控制金桃金娘烯醇胺化Au/ZrO2选择性","authors":"Yu. S. Demidova , E.V. Suslov , I.L. Simakova , E.S. Mozhajcev , D.V. Korchagina , K.P. Volcho , N.F. Salakhutdinov , A. Simakov , D. Yu. Murzin","doi":"10.1016/j.molcata.2016.10.034","DOIUrl":null,"url":null,"abstract":"<div><p>The one-pot myrtenol amination was studied over Au (3<!--> <!-->wt.%)/ZrO<sub>2</sub> catalyst under mixed N<sub>2</sub>/H<sub>2</sub> atmosphere (9<!--> <!-->bar). The effect of hydrogen addition was explored with the aim to increase selectivity to the target amines. Hydrogen addition timing depending on myrtenol conversion and hydrogenation temperature affected selectivity to the reaction products. Hydrogen addition (1<!--> <!-->bar) after almost complete myrtenol conversion at 100<!--> <!-->°C increased the yield to amine up to 68% preserving C<img>C bond in the initial myrtenol structure. Hydrogen addition at 180<!--> <!-->°C irrespective of the myrtenol conversion level provoked reduction of both C<img>C and C<img>N bonds with formation of two diastereomers (yield up to 93%), with <em>trans</em>-isomer formation being preferred when hydrogen was added at almost complete myrtenol conversion. It was shown, that in the presence of a gold catalyst controlled hydrogenation of competitive C<img>C and C<img>N groups can be performed during one-pot alcohol amination by regulation of the reaction conditions.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 60-67"},"PeriodicalIF":5.0620,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.10.034","citationCount":"10","resultStr":"{\"title\":\"Selectivity control in one-pot myrtenol amination over Au/ZrO2 by molecular hydrogen addition\",\"authors\":\"Yu. S. Demidova , E.V. Suslov , I.L. Simakova , E.S. Mozhajcev , D.V. Korchagina , K.P. Volcho , N.F. Salakhutdinov , A. Simakov , D. Yu. Murzin\",\"doi\":\"10.1016/j.molcata.2016.10.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The one-pot myrtenol amination was studied over Au (3<!--> <!-->wt.%)/ZrO<sub>2</sub> catalyst under mixed N<sub>2</sub>/H<sub>2</sub> atmosphere (9<!--> <!-->bar). The effect of hydrogen addition was explored with the aim to increase selectivity to the target amines. Hydrogen addition timing depending on myrtenol conversion and hydrogenation temperature affected selectivity to the reaction products. Hydrogen addition (1<!--> <!-->bar) after almost complete myrtenol conversion at 100<!--> <!-->°C increased the yield to amine up to 68% preserving C<img>C bond in the initial myrtenol structure. Hydrogen addition at 180<!--> <!-->°C irrespective of the myrtenol conversion level provoked reduction of both C<img>C and C<img>N bonds with formation of two diastereomers (yield up to 93%), with <em>trans</em>-isomer formation being preferred when hydrogen was added at almost complete myrtenol conversion. It was shown, that in the presence of a gold catalyst controlled hydrogenation of competitive C<img>C and C<img>N groups can be performed during one-pot alcohol amination by regulation of the reaction conditions.</p></div>\",\"PeriodicalId\":370,\"journal\":{\"name\":\"Journal of Molecular Catalysis A: Chemical\",\"volume\":\"426 \",\"pages\":\"Pages 60-67\"},\"PeriodicalIF\":5.0620,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcata.2016.10.034\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis A: Chemical\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381116916304356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis A: Chemical","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381116916304356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Selectivity control in one-pot myrtenol amination over Au/ZrO2 by molecular hydrogen addition
The one-pot myrtenol amination was studied over Au (3 wt.%)/ZrO2 catalyst under mixed N2/H2 atmosphere (9 bar). The effect of hydrogen addition was explored with the aim to increase selectivity to the target amines. Hydrogen addition timing depending on myrtenol conversion and hydrogenation temperature affected selectivity to the reaction products. Hydrogen addition (1 bar) after almost complete myrtenol conversion at 100 °C increased the yield to amine up to 68% preserving CC bond in the initial myrtenol structure. Hydrogen addition at 180 °C irrespective of the myrtenol conversion level provoked reduction of both CC and CN bonds with formation of two diastereomers (yield up to 93%), with trans-isomer formation being preferred when hydrogen was added at almost complete myrtenol conversion. It was shown, that in the presence of a gold catalyst controlled hydrogenation of competitive CC and CN groups can be performed during one-pot alcohol amination by regulation of the reaction conditions.
期刊介绍:
The Journal of Molecular Catalysis A: Chemical publishes original, rigorous, and scholarly full papers that examine the molecular and atomic aspects of catalytic activation and reaction mechanisms in homogeneous catalysis, heterogeneous catalysis (including supported organometallic catalysis), and computational catalysis.