{"title":"大鼠肝脏中未磷酸化、磷酸化和蛋白水解修饰果糖双磷酸酶的动力学","authors":"Pia Ekman, Ulla Dahlqvist-Edberg","doi":"10.1016/0005-2744(81)90038-3","DOIUrl":null,"url":null,"abstract":"<div><p>Phosphorylation of fructose-bisphosphatase (<span>d</span>-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) by the catalytic subunit of cyclic AMP-dependent protein kinase from pig muscle decreased the <em>K</em><sub>0.5</sub> for fructose-bisphosphate from 21 to 11 μM. When the phosphorylated fructose-bisphosphatase was treated with trypsin the <em>K</em><sub>0.5</sub> increased to 22 μM. The <em>K</em><sub>0.5</sub> also increased when the phosphoenzyme was treated with a partially purified phosphatase from rat liver. There was no difference between the unphosphorylated and phosphorylated enzyme with respect to pH dependence, the pH optimum being about 7.0 for both. Limited treatment of fructose-bisphosphatase with subtilisin, which cleaves the enzyme at its unphosphorylatable N-terminal part, increased the pH optimum more than limited treatment with trypsin, which releases the phosphorylated peptide at the C-terminal part of fructose-bisphosphatase. The phosphorylated site on the phosphorylated fructose-bisphosphatase was more easily split off by trypsin treatment than the corresponding unphosphorylated site. The results suggest in addition to the glucagon-induced phosphorylation of fructose-bisphosphatase described by Claus et al. [1] that the phosphorylation-dephosphorylation of fructose-bisphosphatase could be of importance for the hormonal regulation of the enzyme in vivo.</p></div>","PeriodicalId":100159,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Enzymology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1981-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0005-2744(81)90038-3","citationCount":"19","resultStr":"{\"title\":\"The kinetics of unphosphorylated, phosphorylated and proteolytically modified fructose bisphosphatase from rat liver\",\"authors\":\"Pia Ekman, Ulla Dahlqvist-Edberg\",\"doi\":\"10.1016/0005-2744(81)90038-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phosphorylation of fructose-bisphosphatase (<span>d</span>-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) by the catalytic subunit of cyclic AMP-dependent protein kinase from pig muscle decreased the <em>K</em><sub>0.5</sub> for fructose-bisphosphate from 21 to 11 μM. When the phosphorylated fructose-bisphosphatase was treated with trypsin the <em>K</em><sub>0.5</sub> increased to 22 μM. The <em>K</em><sub>0.5</sub> also increased when the phosphoenzyme was treated with a partially purified phosphatase from rat liver. There was no difference between the unphosphorylated and phosphorylated enzyme with respect to pH dependence, the pH optimum being about 7.0 for both. Limited treatment of fructose-bisphosphatase with subtilisin, which cleaves the enzyme at its unphosphorylatable N-terminal part, increased the pH optimum more than limited treatment with trypsin, which releases the phosphorylated peptide at the C-terminal part of fructose-bisphosphatase. The phosphorylated site on the phosphorylated fructose-bisphosphatase was more easily split off by trypsin treatment than the corresponding unphosphorylated site. The results suggest in addition to the glucagon-induced phosphorylation of fructose-bisphosphatase described by Claus et al. [1] that the phosphorylation-dephosphorylation of fructose-bisphosphatase could be of importance for the hormonal regulation of the enzyme in vivo.</p></div>\",\"PeriodicalId\":100159,\"journal\":{\"name\":\"Biochimica et Biophysica Acta (BBA) - Enzymology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0005-2744(81)90038-3\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta (BBA) - Enzymology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0005274481900383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Enzymology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0005274481900383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The kinetics of unphosphorylated, phosphorylated and proteolytically modified fructose bisphosphatase from rat liver
Phosphorylation of fructose-bisphosphatase (d-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) by the catalytic subunit of cyclic AMP-dependent protein kinase from pig muscle decreased the K0.5 for fructose-bisphosphate from 21 to 11 μM. When the phosphorylated fructose-bisphosphatase was treated with trypsin the K0.5 increased to 22 μM. The K0.5 also increased when the phosphoenzyme was treated with a partially purified phosphatase from rat liver. There was no difference between the unphosphorylated and phosphorylated enzyme with respect to pH dependence, the pH optimum being about 7.0 for both. Limited treatment of fructose-bisphosphatase with subtilisin, which cleaves the enzyme at its unphosphorylatable N-terminal part, increased the pH optimum more than limited treatment with trypsin, which releases the phosphorylated peptide at the C-terminal part of fructose-bisphosphatase. The phosphorylated site on the phosphorylated fructose-bisphosphatase was more easily split off by trypsin treatment than the corresponding unphosphorylated site. The results suggest in addition to the glucagon-induced phosphorylation of fructose-bisphosphatase described by Claus et al. [1] that the phosphorylation-dephosphorylation of fructose-bisphosphatase could be of importance for the hormonal regulation of the enzyme in vivo.