{"title":"激波管实验中单激光和深度神经网络的多物种形成","authors":"Mohamed Sy , Mhanna Mhanna , Aamir Farooq","doi":"10.1016/j.combustflame.2023.112929","DOIUrl":null,"url":null,"abstract":"<div><p><span>Chemical kinetic experiments involving the oxidation<span> or pyrolysis<span> of fuels can be complex, especially when multiple species are formed and consumed simultaneously. Therefore, a diagnostic strategy that enables fast and selective detection of multiple species is highly desirable. In this work, we present a mid-infrared laser diagnostic that can simultaneously detect multiple species in high-temperature shock-tube experiments using a single laser. By tuning the wavelength of the laser over 3038 – 3039.6 cm</span></span></span><sup>−1</sup><span> wavelength range and employing a denoising model based on deep neural networks<span><span> (DNN), we were able to differentiate the absorbance spectra of ethane, ethylene, methane, propane, and propylene. The denoising model is able to clean noisy absorbance spectra, and the denoised spectra are then split these into contributions from evolving species using multidimensional linear regression (MLR). To the best of our knowledge, this work represents the first successful implementation of time-resolved multispecies detection using a single narrow wavelength-tuning laser. To validate our methodology, we conducted pyrolysis experiments of ethane and propane. The results of our experiments showed excellent agreement with previous experimental data and chemical </span>kinetic model simulations. Overall, our diagnostic strategy represents a promising approach for detecting multiple species in high-temperature transient environments.</span></span></p></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"255 ","pages":"Article 112929"},"PeriodicalIF":5.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-speciation in shock tube experiments using a single laser and deep neural networks\",\"authors\":\"Mohamed Sy , Mhanna Mhanna , Aamir Farooq\",\"doi\":\"10.1016/j.combustflame.2023.112929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Chemical kinetic experiments involving the oxidation<span> or pyrolysis<span> of fuels can be complex, especially when multiple species are formed and consumed simultaneously. Therefore, a diagnostic strategy that enables fast and selective detection of multiple species is highly desirable. In this work, we present a mid-infrared laser diagnostic that can simultaneously detect multiple species in high-temperature shock-tube experiments using a single laser. By tuning the wavelength of the laser over 3038 – 3039.6 cm</span></span></span><sup>−1</sup><span> wavelength range and employing a denoising model based on deep neural networks<span><span> (DNN), we were able to differentiate the absorbance spectra of ethane, ethylene, methane, propane, and propylene. The denoising model is able to clean noisy absorbance spectra, and the denoised spectra are then split these into contributions from evolving species using multidimensional linear regression (MLR). To the best of our knowledge, this work represents the first successful implementation of time-resolved multispecies detection using a single narrow wavelength-tuning laser. To validate our methodology, we conducted pyrolysis experiments of ethane and propane. The results of our experiments showed excellent agreement with previous experimental data and chemical </span>kinetic model simulations. Overall, our diagnostic strategy represents a promising approach for detecting multiple species in high-temperature transient environments.</span></span></p></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":\"255 \",\"pages\":\"Article 112929\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218023003103\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218023003103","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Multi-speciation in shock tube experiments using a single laser and deep neural networks
Chemical kinetic experiments involving the oxidation or pyrolysis of fuels can be complex, especially when multiple species are formed and consumed simultaneously. Therefore, a diagnostic strategy that enables fast and selective detection of multiple species is highly desirable. In this work, we present a mid-infrared laser diagnostic that can simultaneously detect multiple species in high-temperature shock-tube experiments using a single laser. By tuning the wavelength of the laser over 3038 – 3039.6 cm−1 wavelength range and employing a denoising model based on deep neural networks (DNN), we were able to differentiate the absorbance spectra of ethane, ethylene, methane, propane, and propylene. The denoising model is able to clean noisy absorbance spectra, and the denoised spectra are then split these into contributions from evolving species using multidimensional linear regression (MLR). To the best of our knowledge, this work represents the first successful implementation of time-resolved multispecies detection using a single narrow wavelength-tuning laser. To validate our methodology, we conducted pyrolysis experiments of ethane and propane. The results of our experiments showed excellent agreement with previous experimental data and chemical kinetic model simulations. Overall, our diagnostic strategy represents a promising approach for detecting multiple species in high-temperature transient environments.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.