{"title":"转录和基因组完整性","authors":"Mats Ljungman","doi":"10.1016/j.dnarep.2022.103373","DOIUrl":null,"url":null,"abstract":"<div><p>Transcription can cause genome instability<span><span> by promoting R-loop formation but also act as a mutation-suppressing machinery by sensing of DNA lesions leading to the activation of DNA damage signaling and transcription-coupled repair. Recovery of RNA synthesis following the resolution of repair of transcription-blocking lesions is critical to avoid apoptosis and several new factors involved in this process have recently been identified. Some </span>DNA repair proteins<span> are recruited to initiating RNA polymerases and this may expediate the recruitment of other factors that participate in the repair of transcription-blocking DNA lesions. Recent studies have shown that transcription of protein-coding genes does not always give rise to spliced transcripts, opening the possibility that cells may use the transcription machinery in a splicing-uncoupled manner for other purposes including surveillance of the transcribed genome.</span></span></p></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"118 ","pages":"Article 103373"},"PeriodicalIF":3.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transcription and genome integrity\",\"authors\":\"Mats Ljungman\",\"doi\":\"10.1016/j.dnarep.2022.103373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transcription can cause genome instability<span><span> by promoting R-loop formation but also act as a mutation-suppressing machinery by sensing of DNA lesions leading to the activation of DNA damage signaling and transcription-coupled repair. Recovery of RNA synthesis following the resolution of repair of transcription-blocking lesions is critical to avoid apoptosis and several new factors involved in this process have recently been identified. Some </span>DNA repair proteins<span> are recruited to initiating RNA polymerases and this may expediate the recruitment of other factors that participate in the repair of transcription-blocking DNA lesions. Recent studies have shown that transcription of protein-coding genes does not always give rise to spliced transcripts, opening the possibility that cells may use the transcription machinery in a splicing-uncoupled manner for other purposes including surveillance of the transcribed genome.</span></span></p></div>\",\"PeriodicalId\":300,\"journal\":{\"name\":\"DNA Repair\",\"volume\":\"118 \",\"pages\":\"Article 103373\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Repair\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568786422001069\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786422001069","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Transcription can cause genome instability by promoting R-loop formation but also act as a mutation-suppressing machinery by sensing of DNA lesions leading to the activation of DNA damage signaling and transcription-coupled repair. Recovery of RNA synthesis following the resolution of repair of transcription-blocking lesions is critical to avoid apoptosis and several new factors involved in this process have recently been identified. Some DNA repair proteins are recruited to initiating RNA polymerases and this may expediate the recruitment of other factors that participate in the repair of transcription-blocking DNA lesions. Recent studies have shown that transcription of protein-coding genes does not always give rise to spliced transcripts, opening the possibility that cells may use the transcription machinery in a splicing-uncoupled manner for other purposes including surveillance of the transcribed genome.
期刊介绍:
DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease.
DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.