H2S/CO2卤水和H2S/CO2蒸气腐蚀环境下X65钢的腐蚀机理

IF 4.9 2区 工程技术 Q2 ENERGY & FUELS
Min Qin , Kexi Liao , Guoxi He , Qing Zou , Shuai Zhao , Shijian Zhang
{"title":"H2S/CO2卤水和H2S/CO2蒸气腐蚀环境下X65钢的腐蚀机理","authors":"Min Qin ,&nbsp;Kexi Liao ,&nbsp;Guoxi He ,&nbsp;Qing Zou ,&nbsp;Shuai Zhao ,&nbsp;Shijian Zhang","doi":"10.1016/j.jngse.2022.104774","DOIUrl":null,"url":null,"abstract":"<div><p><span>Wet gas<span><span> gathering and transportation in natural gas production has good economic benefits, but it also brings many risks. Due to the </span>synergistic effect<span> of corrosive gas and multi-phase flow in the wet gas pipeline, there are two corrosive environments, which leads to frequent accidents of pipeline corrosion failure. In this paper, the corrosion experiments of X65 steel in two environments (H</span></span></span><sub>2</sub>S/CO<sub>2</sub> vapor; H<sub>2</sub>S/CO<sub>2</sub><span>-dissolved brine) were completed by a high-temperature and high-pressure reactor. Combined with SEM<span>, EDS and XRD instruments, the morphology, elements and compounds of corrosion products were analyzed. The corrosion impact of temperature, flow rate, CO</span></span><sub>2</sub> and H<sub>2</sub><span>S in both environments was determined. Finally, corrosion mechanism in two corrosion environments were established. When CO</span><sub>2</sub> and H<sub>2</sub>S coexisted, both in two corrosive environments, the two gases were involved in the corrosion of X65 steel, and the corrosion products formed were FeCO<sub>3</sub><span> and FeS in the liquid phase. The difference was that the corrosion product film in the gas phase was denser than that in the liquid phase and the corrosion rate in the gas phase was smaller than that in the liquid. There was a large amount of Cl</span><sup>−</sup> and high shear force brought by the flowing, the corrosion product film fell off and formed local corrosion. In the gas phase, due to the H<sub>2</sub>S and CO<sub>2</sub> higher concentration, a dense corrosion product film rapidly formed in the droplets. In the two environments, the order of corrosion factors is <span><math><mrow><msub><mi>P</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>S</mi></mrow></msub></mrow></math></span> ≫<span><math><mrow><msub><mi>P</mi><mrow><mi>C</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></msub></mrow></math></span> Velocity &gt; Temperature. But in the gas phase environment, H<sub>2</sub>S dominates in the gas phase more than in the liquid phase because it is more soluble in droplets.</p></div>","PeriodicalId":372,"journal":{"name":"Journal of Natural Gas Science and Engineering","volume":"106 ","pages":"Article 104774"},"PeriodicalIF":4.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Corrosion mechanism of X65 steel exposed to H2S/CO2 brine and H2S/CO2 vapor corrosion environments\",\"authors\":\"Min Qin ,&nbsp;Kexi Liao ,&nbsp;Guoxi He ,&nbsp;Qing Zou ,&nbsp;Shuai Zhao ,&nbsp;Shijian Zhang\",\"doi\":\"10.1016/j.jngse.2022.104774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Wet gas<span><span> gathering and transportation in natural gas production has good economic benefits, but it also brings many risks. Due to the </span>synergistic effect<span> of corrosive gas and multi-phase flow in the wet gas pipeline, there are two corrosive environments, which leads to frequent accidents of pipeline corrosion failure. In this paper, the corrosion experiments of X65 steel in two environments (H</span></span></span><sub>2</sub>S/CO<sub>2</sub> vapor; H<sub>2</sub>S/CO<sub>2</sub><span>-dissolved brine) were completed by a high-temperature and high-pressure reactor. Combined with SEM<span>, EDS and XRD instruments, the morphology, elements and compounds of corrosion products were analyzed. The corrosion impact of temperature, flow rate, CO</span></span><sub>2</sub> and H<sub>2</sub><span>S in both environments was determined. Finally, corrosion mechanism in two corrosion environments were established. When CO</span><sub>2</sub> and H<sub>2</sub>S coexisted, both in two corrosive environments, the two gases were involved in the corrosion of X65 steel, and the corrosion products formed were FeCO<sub>3</sub><span> and FeS in the liquid phase. The difference was that the corrosion product film in the gas phase was denser than that in the liquid phase and the corrosion rate in the gas phase was smaller than that in the liquid. There was a large amount of Cl</span><sup>−</sup> and high shear force brought by the flowing, the corrosion product film fell off and formed local corrosion. In the gas phase, due to the H<sub>2</sub>S and CO<sub>2</sub> higher concentration, a dense corrosion product film rapidly formed in the droplets. In the two environments, the order of corrosion factors is <span><math><mrow><msub><mi>P</mi><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>S</mi></mrow></msub></mrow></math></span> ≫<span><math><mrow><msub><mi>P</mi><mrow><mi>C</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></msub></mrow></math></span> Velocity &gt; Temperature. But in the gas phase environment, H<sub>2</sub>S dominates in the gas phase more than in the liquid phase because it is more soluble in droplets.</p></div>\",\"PeriodicalId\":372,\"journal\":{\"name\":\"Journal of Natural Gas Science and Engineering\",\"volume\":\"106 \",\"pages\":\"Article 104774\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Gas Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875510022003602\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875510022003602","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

天然气生产中的湿式集输具有良好的经济效益,但也带来了诸多风险。由于湿气管道中腐蚀性气体和多相流的协同作用,存在两种腐蚀环境,导致管道腐蚀失效事故频发。本文对X65钢在两种环境(H2S/CO2蒸气;H2S/ co2溶解盐水)在高温高压反应器中完成。结合扫描电镜(SEM)、能谱仪(EDS)和x射线衍射仪(XRD)对腐蚀产物的形貌、元素和化合物进行了分析。测定了两种环境下温度、流速、CO2和H2S对腐蚀的影响。最后,建立了两种腐蚀环境下的腐蚀机理。当CO2和H2S共存时,在两种腐蚀环境下,这两种气体都参与对X65钢的腐蚀,形成的腐蚀产物为液相的FeCO3和FeS。不同之处在于气相的腐蚀产物膜比液相的腐蚀产物膜密度大,气相的腐蚀速率比液相的腐蚀速率小。由于流动带来大量Cl−和较大的剪切力,腐蚀产物膜脱落,形成局部腐蚀。在气相中,由于H2S和CO2浓度较高,在液滴中迅速形成致密的腐蚀产物膜。在两种环境下,腐蚀因子的大小顺序为:PH2S > PCO2 Velocity >温度。但在气相环境中,H2S在气相中比在液相中更占优势,因为它更容易溶于液滴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corrosion mechanism of X65 steel exposed to H2S/CO2 brine and H2S/CO2 vapor corrosion environments

Wet gas gathering and transportation in natural gas production has good economic benefits, but it also brings many risks. Due to the synergistic effect of corrosive gas and multi-phase flow in the wet gas pipeline, there are two corrosive environments, which leads to frequent accidents of pipeline corrosion failure. In this paper, the corrosion experiments of X65 steel in two environments (H2S/CO2 vapor; H2S/CO2-dissolved brine) were completed by a high-temperature and high-pressure reactor. Combined with SEM, EDS and XRD instruments, the morphology, elements and compounds of corrosion products were analyzed. The corrosion impact of temperature, flow rate, CO2 and H2S in both environments was determined. Finally, corrosion mechanism in two corrosion environments were established. When CO2 and H2S coexisted, both in two corrosive environments, the two gases were involved in the corrosion of X65 steel, and the corrosion products formed were FeCO3 and FeS in the liquid phase. The difference was that the corrosion product film in the gas phase was denser than that in the liquid phase and the corrosion rate in the gas phase was smaller than that in the liquid. There was a large amount of Cl and high shear force brought by the flowing, the corrosion product film fell off and formed local corrosion. In the gas phase, due to the H2S and CO2 higher concentration, a dense corrosion product film rapidly formed in the droplets. In the two environments, the order of corrosion factors is PH2SPCO2 Velocity > Temperature. But in the gas phase environment, H2S dominates in the gas phase more than in the liquid phase because it is more soluble in droplets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Natural Gas Science and Engineering
Journal of Natural Gas Science and Engineering ENERGY & FUELS-ENGINEERING, CHEMICAL
CiteScore
8.90
自引率
0.00%
发文量
388
审稿时长
3.6 months
期刊介绍: The objective of the Journal of Natural Gas Science & Engineering is to bridge the gap between the engineering and the science of natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of natural gas science and engineering from the reservoir to the market. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Natural Gas Science & Engineering covers the fields of natural gas exploration, production, processing and transmission in its broadest possible sense. Topics include: origin and accumulation of natural gas; natural gas geochemistry; gas-reservoir engineering; well logging, testing and evaluation; mathematical modelling; enhanced gas recovery; thermodynamics and phase behaviour, gas-reservoir modelling and simulation; natural gas production engineering; primary and enhanced production from unconventional gas resources, subsurface issues related to coalbed methane, tight gas, shale gas, and hydrate production, formation evaluation; exploration methods, multiphase flow and flow assurance issues, novel processing (e.g., subsea) techniques, raw gas transmission methods, gas processing/LNG technologies, sales gas transmission and storage. The Journal of Natural Gas Science & Engineering will also focus on economical, environmental, management and safety issues related to natural gas production, processing and transportation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信