{"title":"无机/有机材料用于减少有毒氮氧化物(NOx)的当前挑战和发展-综述","authors":"Tamanna Harihar Panigrahi , Satya Ranjan Sahoo , Gajiram Murmu , Dipak Maity , Sumit Saha","doi":"10.1016/j.progsolidstchem.2022.100380","DOIUrl":null,"url":null,"abstract":"<div><p><span>Nitrogen oxides<span> (NOx) are toxic gases produced from various anthropogenic and natural sources. It causes acid rain, ozone depletion, photochemical smog, corrosion of buildings, and various health hazards. The removal of these toxic gases is vital to safeguard the health of living organisms and the air quality on the earth. These can be done by complying with government regulations and using efficient gas capture techniques in industries. However, the challenge remains in arresting these toxic gases with high efficiency, selectivity, and sustainability using low-cost materials. The present review summarizes the recent advances in the detention and diminution of NOx (NO</span></span><sub>2</sub><span>, NO, and N</span><sub>2</sub>O) by inorganic and organic materials. We have discussed different processes for capturing nitrogen dioxides (NO<sub>2</sub><span><span>) using various materials namely metal-organic framework, activated carbon, functionalized metal oxides, transition metals, and </span>zeolites<span>. Moreover, a variety of materials such as ionic liquid<span>, deep eutectic liquid, and selective catalytic reduction-based materials, including metal oxides and zeolites, are described for the abatement of nitric oxides (NO). Finally, the methods of capturing nitrous oxides (N</span></span></span><sub>2</sub>O) are deliberated, including direct and photocatalytic decomposition, followed by various adsorbent materials. Overall, different materials/methods and mechanisms for NOx detention and/or abatement are well presented and their efficiency is compared in this review. The present article also showcases all the examples of recently developed high-performance materials for efficient NOx capturing/abating.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"68 ","pages":"Article 100380"},"PeriodicalIF":9.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Current challenges and developments of inorganic/organic materials for the abatement of toxic nitrogen oxides (NOx) – A critical review\",\"authors\":\"Tamanna Harihar Panigrahi , Satya Ranjan Sahoo , Gajiram Murmu , Dipak Maity , Sumit Saha\",\"doi\":\"10.1016/j.progsolidstchem.2022.100380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Nitrogen oxides<span> (NOx) are toxic gases produced from various anthropogenic and natural sources. It causes acid rain, ozone depletion, photochemical smog, corrosion of buildings, and various health hazards. The removal of these toxic gases is vital to safeguard the health of living organisms and the air quality on the earth. These can be done by complying with government regulations and using efficient gas capture techniques in industries. However, the challenge remains in arresting these toxic gases with high efficiency, selectivity, and sustainability using low-cost materials. The present review summarizes the recent advances in the detention and diminution of NOx (NO</span></span><sub>2</sub><span>, NO, and N</span><sub>2</sub>O) by inorganic and organic materials. We have discussed different processes for capturing nitrogen dioxides (NO<sub>2</sub><span><span>) using various materials namely metal-organic framework, activated carbon, functionalized metal oxides, transition metals, and </span>zeolites<span>. Moreover, a variety of materials such as ionic liquid<span>, deep eutectic liquid, and selective catalytic reduction-based materials, including metal oxides and zeolites, are described for the abatement of nitric oxides (NO). Finally, the methods of capturing nitrous oxides (N</span></span></span><sub>2</sub>O) are deliberated, including direct and photocatalytic decomposition, followed by various adsorbent materials. Overall, different materials/methods and mechanisms for NOx detention and/or abatement are well presented and their efficiency is compared in this review. The present article also showcases all the examples of recently developed high-performance materials for efficient NOx capturing/abating.</p></div>\",\"PeriodicalId\":415,\"journal\":{\"name\":\"Progress in Solid State Chemistry\",\"volume\":\"68 \",\"pages\":\"Article 100380\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079678622000346\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678622000346","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Current challenges and developments of inorganic/organic materials for the abatement of toxic nitrogen oxides (NOx) – A critical review
Nitrogen oxides (NOx) are toxic gases produced from various anthropogenic and natural sources. It causes acid rain, ozone depletion, photochemical smog, corrosion of buildings, and various health hazards. The removal of these toxic gases is vital to safeguard the health of living organisms and the air quality on the earth. These can be done by complying with government regulations and using efficient gas capture techniques in industries. However, the challenge remains in arresting these toxic gases with high efficiency, selectivity, and sustainability using low-cost materials. The present review summarizes the recent advances in the detention and diminution of NOx (NO2, NO, and N2O) by inorganic and organic materials. We have discussed different processes for capturing nitrogen dioxides (NO2) using various materials namely metal-organic framework, activated carbon, functionalized metal oxides, transition metals, and zeolites. Moreover, a variety of materials such as ionic liquid, deep eutectic liquid, and selective catalytic reduction-based materials, including metal oxides and zeolites, are described for the abatement of nitric oxides (NO). Finally, the methods of capturing nitrous oxides (N2O) are deliberated, including direct and photocatalytic decomposition, followed by various adsorbent materials. Overall, different materials/methods and mechanisms for NOx detention and/or abatement are well presented and their efficiency is compared in this review. The present article also showcases all the examples of recently developed high-performance materials for efficient NOx capturing/abating.
期刊介绍:
Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.