多变量队列分析。

National Cancer Institute monograph Pub Date : 1985-05-01
N Breslow
{"title":"多变量队列分析。","authors":"N Breslow","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Modern methods of categorical and survival data analysis are usefully applied to the multivariate analysis of follow-up data that arise in epidemiologic cohort studies. They provide a formal basis for extending analyses based on the standardized mortality ratio into the multivariate domain so as to permit simultaneous consideration of such risk factors as age, duration, and intensity of exposure; age and calendar year of follow-up; and personal characteristics. Analogous methods are available that control for demographic variables internally, without reference to vital statistics or other standard rates. Various model structures allow for the effects of different variables to combine in an additive, multiplicative, or mixed (additive relative risks) fashion. Illustrative analyses are provided of the relationship between respiratory cancer mortality and arsenic exposure in a cohort of Montana smelter workers.</p>","PeriodicalId":76196,"journal":{"name":"National Cancer Institute monograph","volume":"67 ","pages":"149-56"},"PeriodicalIF":0.0000,"publicationDate":"1985-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate cohort analysis.\",\"authors\":\"N Breslow\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modern methods of categorical and survival data analysis are usefully applied to the multivariate analysis of follow-up data that arise in epidemiologic cohort studies. They provide a formal basis for extending analyses based on the standardized mortality ratio into the multivariate domain so as to permit simultaneous consideration of such risk factors as age, duration, and intensity of exposure; age and calendar year of follow-up; and personal characteristics. Analogous methods are available that control for demographic variables internally, without reference to vital statistics or other standard rates. Various model structures allow for the effects of different variables to combine in an additive, multiplicative, or mixed (additive relative risks) fashion. Illustrative analyses are provided of the relationship between respiratory cancer mortality and arsenic exposure in a cohort of Montana smelter workers.</p>\",\"PeriodicalId\":76196,\"journal\":{\"name\":\"National Cancer Institute monograph\",\"volume\":\"67 \",\"pages\":\"149-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Cancer Institute monograph\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Cancer Institute monograph","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分类和生存数据分析的现代方法有效地应用于流行病学队列研究中出现的随访数据的多变量分析。它们为将基于标准化死亡率的分析扩展到多变量领域提供了正式基础,以便同时考虑年龄、持续时间和暴露强度等风险因素;年龄和随访日历年;还有个人特点。类似的方法可以在内部控制人口变量,而不参考生命统计或其他标准比率。不同的模型结构允许不同变量的影响以相加、相乘或混合(相加的相对风险)的方式组合在一起。对蒙大拿州一群冶炼厂工人的呼吸系统癌症死亡率和砷暴露之间的关系进行了说明性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate cohort analysis.

Modern methods of categorical and survival data analysis are usefully applied to the multivariate analysis of follow-up data that arise in epidemiologic cohort studies. They provide a formal basis for extending analyses based on the standardized mortality ratio into the multivariate domain so as to permit simultaneous consideration of such risk factors as age, duration, and intensity of exposure; age and calendar year of follow-up; and personal characteristics. Analogous methods are available that control for demographic variables internally, without reference to vital statistics or other standard rates. Various model structures allow for the effects of different variables to combine in an additive, multiplicative, or mixed (additive relative risks) fashion. Illustrative analyses are provided of the relationship between respiratory cancer mortality and arsenic exposure in a cohort of Montana smelter workers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信