药物诱导G2阻滞体外动力学分析。

Cell and tissue kinetics Pub Date : 1985-01-01
M Kimmel, F Traganos
{"title":"药物诱导G2阻滞体外动力学分析。","authors":"M Kimmel,&nbsp;F Traganos","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The data on cell-cycle effects of two prospective antitumour agents, (+)-1,2,-bis(3,5-dioxopiperazine-1-yl)propane (soluble ICRF; NSC 169780) and 1,4-bis(2'chloroethyl)-1,4-diazabicyclo [2.2.1] heptane diperchlorate (CBH; NSC 57198) were used to determine whether a modified stathmokinetic experiment could predict the effects of continuous, long-term (0-48 hr) drug exposure in an in vitro L1210 murine leukaemia cell system. Generally, continuous drug exposure of exponentially growing cells does not provide sufficient quantitative information concerning cell-cycle-phase-specific mechanisms of drug action. Alternatively, stathmokinetic experiments, which are usually limited to some fraction of one cell doubling time, provide little information about long-term drug effects. By using mathematical models constructed for this purpose, however, stathmokinetic data can predict the overall proportion of cells affected by a drug though failing to discern between various kinds of drug action (e.g. reversible v. irreversible block, blocking v. killing action, etc.), especially when it occurs in G2 phase. In addition, it can be shown that for at least one of the drugs (soluble ICRF) the stathmokinetic experiment fails to predict 'after-effects' of drug treatment which extend into the following cell cycle(s). It also becomes clear that the degradation of exponential growth characteristics of quickly dividing cells during long-term, continuous drug exposure makes prediction of cell-cycle kinetic perturbations uncertain when derived from short-duration stathmokinetic experiments. However, with care, the joint application of 'short term' (e.g. stathmokinesis) and 'long term' (e.g. continuous exposure) techniques allow adequate quantitative insight into drug-perturbed cell-cycle kinetics. The applicability of modelling techniques is discussed: in the present instance it is limited to lower drug concentrations. For higher drug concentrations, effects like increased ploidy, ineffective division, etc., make it impossible in the present study to obtain a clear picture of the kinetics.</p>","PeriodicalId":75682,"journal":{"name":"Cell and tissue kinetics","volume":"18 1","pages":"91-110"},"PeriodicalIF":0.0000,"publicationDate":"1985-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic analysis of drug-induced G2 block in vitro.\",\"authors\":\"M Kimmel,&nbsp;F Traganos\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The data on cell-cycle effects of two prospective antitumour agents, (+)-1,2,-bis(3,5-dioxopiperazine-1-yl)propane (soluble ICRF; NSC 169780) and 1,4-bis(2'chloroethyl)-1,4-diazabicyclo [2.2.1] heptane diperchlorate (CBH; NSC 57198) were used to determine whether a modified stathmokinetic experiment could predict the effects of continuous, long-term (0-48 hr) drug exposure in an in vitro L1210 murine leukaemia cell system. Generally, continuous drug exposure of exponentially growing cells does not provide sufficient quantitative information concerning cell-cycle-phase-specific mechanisms of drug action. Alternatively, stathmokinetic experiments, which are usually limited to some fraction of one cell doubling time, provide little information about long-term drug effects. By using mathematical models constructed for this purpose, however, stathmokinetic data can predict the overall proportion of cells affected by a drug though failing to discern between various kinds of drug action (e.g. reversible v. irreversible block, blocking v. killing action, etc.), especially when it occurs in G2 phase. In addition, it can be shown that for at least one of the drugs (soluble ICRF) the stathmokinetic experiment fails to predict 'after-effects' of drug treatment which extend into the following cell cycle(s). It also becomes clear that the degradation of exponential growth characteristics of quickly dividing cells during long-term, continuous drug exposure makes prediction of cell-cycle kinetic perturbations uncertain when derived from short-duration stathmokinetic experiments. However, with care, the joint application of 'short term' (e.g. stathmokinesis) and 'long term' (e.g. continuous exposure) techniques allow adequate quantitative insight into drug-perturbed cell-cycle kinetics. The applicability of modelling techniques is discussed: in the present instance it is limited to lower drug concentrations. For higher drug concentrations, effects like increased ploidy, ineffective division, etc., make it impossible in the present study to obtain a clear picture of the kinetics.</p>\",\"PeriodicalId\":75682,\"journal\":{\"name\":\"Cell and tissue kinetics\",\"volume\":\"18 1\",\"pages\":\"91-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and tissue kinetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and tissue kinetics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

两种前瞻性抗肿瘤药物(+)- 1,2,2 -双(3,5-二氧哌嗪-1-基)丙烷(可溶性ICRF;NSC 169780)和1,4-二(2'氯乙基)-1,4-重氮杂环[2.2.1]庚二氯酸盐(CBH;采用NSC 57198)来确定改进的静动力学实验是否可以预测持续、长期(0-48小时)药物暴露对体外L1210小鼠白血病细胞系统的影响。通常,指数生长细胞的连续药物暴露不能提供关于药物作用细胞周期相特异性机制的足够定量信息。另外,静态动力学实验通常局限于一个细胞加倍时间的一小部分,对药物的长期作用提供的信息很少。然而,通过使用为此目的构建的数学模型,静态动力学数据可以预测受药物影响的细胞的总体比例,但无法区分各种药物作用(例如可逆与不可逆阻断,阻断与杀伤作用等),特别是当它发生在G2期时。此外,可以证明,至少有一种药物(可溶性ICRF)的静态动力学实验无法预测药物治疗的“后效”,这种后效会延伸到下一个细胞周期。我们也清楚地看到,在长期、持续的药物暴露中,快速分裂细胞的指数生长特性的退化,使得通过短时间稳态动力学实验得出的细胞周期动力学扰动预测变得不确定。然而,谨慎地联合应用“短期”(如静动)和“长期”(如连续暴露)技术,可以充分定量地了解药物干扰的细胞周期动力学。讨论了建模技术的适用性:在目前的情况下,它仅限于较低的药物浓度。对于较高的药物浓度,诸如倍性增加、分裂无效等效应使得在本研究中不可能获得动力学的清晰图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinetic analysis of drug-induced G2 block in vitro.

The data on cell-cycle effects of two prospective antitumour agents, (+)-1,2,-bis(3,5-dioxopiperazine-1-yl)propane (soluble ICRF; NSC 169780) and 1,4-bis(2'chloroethyl)-1,4-diazabicyclo [2.2.1] heptane diperchlorate (CBH; NSC 57198) were used to determine whether a modified stathmokinetic experiment could predict the effects of continuous, long-term (0-48 hr) drug exposure in an in vitro L1210 murine leukaemia cell system. Generally, continuous drug exposure of exponentially growing cells does not provide sufficient quantitative information concerning cell-cycle-phase-specific mechanisms of drug action. Alternatively, stathmokinetic experiments, which are usually limited to some fraction of one cell doubling time, provide little information about long-term drug effects. By using mathematical models constructed for this purpose, however, stathmokinetic data can predict the overall proportion of cells affected by a drug though failing to discern between various kinds of drug action (e.g. reversible v. irreversible block, blocking v. killing action, etc.), especially when it occurs in G2 phase. In addition, it can be shown that for at least one of the drugs (soluble ICRF) the stathmokinetic experiment fails to predict 'after-effects' of drug treatment which extend into the following cell cycle(s). It also becomes clear that the degradation of exponential growth characteristics of quickly dividing cells during long-term, continuous drug exposure makes prediction of cell-cycle kinetic perturbations uncertain when derived from short-duration stathmokinetic experiments. However, with care, the joint application of 'short term' (e.g. stathmokinesis) and 'long term' (e.g. continuous exposure) techniques allow adequate quantitative insight into drug-perturbed cell-cycle kinetics. The applicability of modelling techniques is discussed: in the present instance it is limited to lower drug concentrations. For higher drug concentrations, effects like increased ploidy, ineffective division, etc., make it impossible in the present study to obtain a clear picture of the kinetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信