躯体感觉诱发电位在脊髓和脑干水平的关键神经监测。

J E Desmedt
{"title":"躯体感觉诱发电位在脊髓和脑干水平的关键神经监测。","authors":"J E Desmedt","doi":"10.1089/cns.1985.2.169","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic averaging makes it possible to analyze somatosensory evoked potentials (SEP) recorded noninvasively from the body surface in man. With noncephalic reference recording, the SEP discloses a series of components that are volume-conducted from distinct open-field generators with a geometry adequate to produce external potential gradients over the head. Farfields are brief positive dips with widespread distribution that present stationary onset and peak latencies all over. They reflect the propagated afferent volley in axons bundles, thus in brachial plexus (P9), dorsal column (P11), and medial lemniscus (P14). Somehow unexpectedly, SEP traces also disclose a widespread prolonged farfield N18 of negative polarity that reflects neural generators in the brainstem below thalamus. Nearfields can be positive or negative, and they reflect neural generators located less than about 50 mm from the electrode. They are influenced to a greater extent by the position of the recording electrodes. For example, neck electrodes can follow the upward propagation of the dorsal column volley (N11), whereas scalp electrodes can map out the distinct contralateral parietal (N20, P27) or frontal (P22, N30) cortical generators. Electrodes around the neck also disclose the posterior N13 and anterior P13 responses that reflect the two sides of the same dorsal horn generator with a horizontal axis. Bit-mapped topographic color imaging of potential fields provides detailed data on time and spatial features of the different SEP neural generators. SEP neuromonitoring can use these results to titrate input to spinal cord (nerve potentials or P9 farfield), spinal generators (N11 nearfield or N13-P13 nearfield in posterior-to-anterior neck montages), brainstem generators (P14 farfield and N18 response), or cortical generators (parietal N20-P27 or frontal P22-N30). The central somatosensory conduction time can be titrated from the spinal entry and cortical arrival times measured in neck and scalp recordings.</p>","PeriodicalId":77690,"journal":{"name":"Central nervous system trauma : journal of the American Paralysis Association","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1985-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/cns.1985.2.169","citationCount":"11","resultStr":"{\"title\":\"Critical neuromonitoring at spinal and brainstem levels by somatosensory evoked potentials.\",\"authors\":\"J E Desmedt\",\"doi\":\"10.1089/cns.1985.2.169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electronic averaging makes it possible to analyze somatosensory evoked potentials (SEP) recorded noninvasively from the body surface in man. With noncephalic reference recording, the SEP discloses a series of components that are volume-conducted from distinct open-field generators with a geometry adequate to produce external potential gradients over the head. Farfields are brief positive dips with widespread distribution that present stationary onset and peak latencies all over. They reflect the propagated afferent volley in axons bundles, thus in brachial plexus (P9), dorsal column (P11), and medial lemniscus (P14). Somehow unexpectedly, SEP traces also disclose a widespread prolonged farfield N18 of negative polarity that reflects neural generators in the brainstem below thalamus. Nearfields can be positive or negative, and they reflect neural generators located less than about 50 mm from the electrode. They are influenced to a greater extent by the position of the recording electrodes. For example, neck electrodes can follow the upward propagation of the dorsal column volley (N11), whereas scalp electrodes can map out the distinct contralateral parietal (N20, P27) or frontal (P22, N30) cortical generators. Electrodes around the neck also disclose the posterior N13 and anterior P13 responses that reflect the two sides of the same dorsal horn generator with a horizontal axis. Bit-mapped topographic color imaging of potential fields provides detailed data on time and spatial features of the different SEP neural generators. SEP neuromonitoring can use these results to titrate input to spinal cord (nerve potentials or P9 farfield), spinal generators (N11 nearfield or N13-P13 nearfield in posterior-to-anterior neck montages), brainstem generators (P14 farfield and N18 response), or cortical generators (parietal N20-P27 or frontal P22-N30). The central somatosensory conduction time can be titrated from the spinal entry and cortical arrival times measured in neck and scalp recordings.</p>\",\"PeriodicalId\":77690,\"journal\":{\"name\":\"Central nervous system trauma : journal of the American Paralysis Association\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/cns.1985.2.169\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central nervous system trauma : journal of the American Paralysis Association\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/cns.1985.2.169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central nervous system trauma : journal of the American Paralysis Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/cns.1985.2.169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

电子平均可以分析人体体表无创记录的体感诱发电位(SEP)。通过非头部参考记录,SEP公开了一系列组件,这些组件由不同的开放场发生器进行体积传导,其几何形状足以产生头部上方的外部电位梯度。远场是短暂的正下降,分布广泛,呈现平稳的开始和峰值潜伏期。它们反映了轴突束中传入波的传播,例如臂丛(P9)、背柱(P11)和内侧小网膜(P14)。出乎意料的是,SEP痕迹还揭示了广泛延长的负极性远场N18,这反映了丘脑下方脑干中的神经发生器。近场可以是正的,也可以是负的,它们反映的是距离电极不到50毫米的神经发生器。它们在更大程度上受记录电极位置的影响。例如,颈部电极可以追踪背柱波的向上传播(N11),而头皮电极可以绘制出不同的对侧顶叶(N20, P27)或额叶(P22, N30)皮层发生器。颈部周围的电极也显示了N13后侧和P13前侧的反应,反映了同一背角发生器的两个水平轴。位图地形彩色成像的势场提供了详细的数据,时间和空间特征的不同SEP神经发生器。SEP神经监测可以利用这些结果来测定脊髓(神经电位或P9远场)、脊髓发生器(颈部前后蒙太奇中的N11近场或N13-P13近场)、脑干发生器(P14远场和N18反应)或皮质发生器(顶叶N20-P27或额叶P22-N30)的输入。中枢体感传导时间可以通过颈部和头皮记录测量的脊髓进入和皮层到达时间来滴定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical neuromonitoring at spinal and brainstem levels by somatosensory evoked potentials.

Electronic averaging makes it possible to analyze somatosensory evoked potentials (SEP) recorded noninvasively from the body surface in man. With noncephalic reference recording, the SEP discloses a series of components that are volume-conducted from distinct open-field generators with a geometry adequate to produce external potential gradients over the head. Farfields are brief positive dips with widespread distribution that present stationary onset and peak latencies all over. They reflect the propagated afferent volley in axons bundles, thus in brachial plexus (P9), dorsal column (P11), and medial lemniscus (P14). Somehow unexpectedly, SEP traces also disclose a widespread prolonged farfield N18 of negative polarity that reflects neural generators in the brainstem below thalamus. Nearfields can be positive or negative, and they reflect neural generators located less than about 50 mm from the electrode. They are influenced to a greater extent by the position of the recording electrodes. For example, neck electrodes can follow the upward propagation of the dorsal column volley (N11), whereas scalp electrodes can map out the distinct contralateral parietal (N20, P27) or frontal (P22, N30) cortical generators. Electrodes around the neck also disclose the posterior N13 and anterior P13 responses that reflect the two sides of the same dorsal horn generator with a horizontal axis. Bit-mapped topographic color imaging of potential fields provides detailed data on time and spatial features of the different SEP neural generators. SEP neuromonitoring can use these results to titrate input to spinal cord (nerve potentials or P9 farfield), spinal generators (N11 nearfield or N13-P13 nearfield in posterior-to-anterior neck montages), brainstem generators (P14 farfield and N18 response), or cortical generators (parietal N20-P27 or frontal P22-N30). The central somatosensory conduction time can be titrated from the spinal entry and cortical arrival times measured in neck and scalp recordings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信