Jørn Theil Nielsen, Søren Nielsen, Erik Ilsø Christensen
{"title":"兔近端小管中蛋白质的管突转运","authors":"Jørn Theil Nielsen, Søren Nielsen, Erik Ilsø Christensen","doi":"10.1016/0889-1605(85)90041-2","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of the present experiments was to study possible different pathways of intracellular transport of proteins after luminal and basolateral uptake in isolated rabbit proximal tubules. Tubules were exposed to cationized ferritin (CF) in the perfusion fluid and horseradish peroxidase (HRP) in the bath simultaneously or to HRP in the bath alone for 30 min. The peritubular fluid (bath) and perfusion fluid were then exchanged and the tubules either fixed immediately or allowed to function during chase-periods for 10, 20, 30, or 60 min before fixation to follow the migration of the proteins through the cells. The proteins were to a large extent found separated in different vacuoles and lysosomes at all time periods studied, indicating separate pathways after uptake via the luminal and basolateral membranes respectively. About 0.5% of the CF taken up by the cells was transported through the cells and became located in the intercellular spaces. HRP was transported from the peritubular fluid to the apical cytoplasm of the tubule indicated by a gradual accumulation of small HRP-containing vesicles, first in the basal part of the cells and then in the apical cytoplasm. In tubules perfused with both CF and HRP in the perfusate, the CF and HRP were found together in apical vacuoles and lysosomes. After perfusions with HRP alone, this tracer was found in similar large vacuoles and lysosomes in the apical cytoplasm, in contrast to the small HRP-filled vacuoles seen after uptake from the bath.</p></div>","PeriodicalId":17593,"journal":{"name":"Journal of ultrastructure research","volume":"92 3","pages":"Pages 133-145"},"PeriodicalIF":0.0000,"publicationDate":"1985-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0889-1605(85)90041-2","citationCount":"21","resultStr":"{\"title\":\"Transtubular transport of proteins in rabbit proximal tubules\",\"authors\":\"Jørn Theil Nielsen, Søren Nielsen, Erik Ilsø Christensen\",\"doi\":\"10.1016/0889-1605(85)90041-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of the present experiments was to study possible different pathways of intracellular transport of proteins after luminal and basolateral uptake in isolated rabbit proximal tubules. Tubules were exposed to cationized ferritin (CF) in the perfusion fluid and horseradish peroxidase (HRP) in the bath simultaneously or to HRP in the bath alone for 30 min. The peritubular fluid (bath) and perfusion fluid were then exchanged and the tubules either fixed immediately or allowed to function during chase-periods for 10, 20, 30, or 60 min before fixation to follow the migration of the proteins through the cells. The proteins were to a large extent found separated in different vacuoles and lysosomes at all time periods studied, indicating separate pathways after uptake via the luminal and basolateral membranes respectively. About 0.5% of the CF taken up by the cells was transported through the cells and became located in the intercellular spaces. HRP was transported from the peritubular fluid to the apical cytoplasm of the tubule indicated by a gradual accumulation of small HRP-containing vesicles, first in the basal part of the cells and then in the apical cytoplasm. In tubules perfused with both CF and HRP in the perfusate, the CF and HRP were found together in apical vacuoles and lysosomes. After perfusions with HRP alone, this tracer was found in similar large vacuoles and lysosomes in the apical cytoplasm, in contrast to the small HRP-filled vacuoles seen after uptake from the bath.</p></div>\",\"PeriodicalId\":17593,\"journal\":{\"name\":\"Journal of ultrastructure research\",\"volume\":\"92 3\",\"pages\":\"Pages 133-145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0889-1605(85)90041-2\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ultrastructure research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0889160585900412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ultrastructure research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0889160585900412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transtubular transport of proteins in rabbit proximal tubules
The purpose of the present experiments was to study possible different pathways of intracellular transport of proteins after luminal and basolateral uptake in isolated rabbit proximal tubules. Tubules were exposed to cationized ferritin (CF) in the perfusion fluid and horseradish peroxidase (HRP) in the bath simultaneously or to HRP in the bath alone for 30 min. The peritubular fluid (bath) and perfusion fluid were then exchanged and the tubules either fixed immediately or allowed to function during chase-periods for 10, 20, 30, or 60 min before fixation to follow the migration of the proteins through the cells. The proteins were to a large extent found separated in different vacuoles and lysosomes at all time periods studied, indicating separate pathways after uptake via the luminal and basolateral membranes respectively. About 0.5% of the CF taken up by the cells was transported through the cells and became located in the intercellular spaces. HRP was transported from the peritubular fluid to the apical cytoplasm of the tubule indicated by a gradual accumulation of small HRP-containing vesicles, first in the basal part of the cells and then in the apical cytoplasm. In tubules perfused with both CF and HRP in the perfusate, the CF and HRP were found together in apical vacuoles and lysosomes. After perfusions with HRP alone, this tracer was found in similar large vacuoles and lysosomes in the apical cytoplasm, in contrast to the small HRP-filled vacuoles seen after uptake from the bath.