{"title":"大鼠肾皮质插层细胞对急性代谢性酸中毒和碱中毒的结构适应","authors":"Jens Dørup","doi":"10.1016/0889-1605(85)90133-8","DOIUrl":null,"url":null,"abstract":"<div><p>The structural responses of cells in the distal convoluted, connecting, and collecting tubule to acute acid/base changes were investigated by electron microscopy. Acute metabolic acidosis was induced by administration of ammonium chloride, and acute metabolic alkalosis by potassium or sodium bicarbonate. Morphometric analyses were performed on micrographs of randomly selected distal nephron cells. No structural responses were found in distal convoluted tubule cells, connecting tubule cells, or principal cells but prominent changes were observed in intercalated cells (I cells). Thus, the surface density of the luminal membrane in I cells was significantly higher in acidotic animals and lower in KHCO<sub>3</sub> alkalotic animals than in controls. On the contrary, the surface density of the membrane that bounds apical vesicles was higher in KHCO<sub>3</sub> alkalotic and lower in acidotic animals than in controls. These results suggest that the luminal membrane is internalized during alkalosis and that the membrane that bounds apical vesicles is transferred to the luminal membrane during acidosis. Since a proton translocating ATPase may be present in the luminal membrane the observations are consistent with the possibility that cortical I cells participate in the maintenance of acid/base homeostasis.</p></div>","PeriodicalId":17593,"journal":{"name":"Journal of ultrastructure research","volume":"92 1","pages":"Pages 119-131"},"PeriodicalIF":0.0000,"publicationDate":"1985-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0889-1605(85)90133-8","citationCount":"31","resultStr":"{\"title\":\"Structural adaptation of intercalated cells in rat renal cortex to acute metabolic acidosis and alkalosis\",\"authors\":\"Jens Dørup\",\"doi\":\"10.1016/0889-1605(85)90133-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The structural responses of cells in the distal convoluted, connecting, and collecting tubule to acute acid/base changes were investigated by electron microscopy. Acute metabolic acidosis was induced by administration of ammonium chloride, and acute metabolic alkalosis by potassium or sodium bicarbonate. Morphometric analyses were performed on micrographs of randomly selected distal nephron cells. No structural responses were found in distal convoluted tubule cells, connecting tubule cells, or principal cells but prominent changes were observed in intercalated cells (I cells). Thus, the surface density of the luminal membrane in I cells was significantly higher in acidotic animals and lower in KHCO<sub>3</sub> alkalotic animals than in controls. On the contrary, the surface density of the membrane that bounds apical vesicles was higher in KHCO<sub>3</sub> alkalotic and lower in acidotic animals than in controls. These results suggest that the luminal membrane is internalized during alkalosis and that the membrane that bounds apical vesicles is transferred to the luminal membrane during acidosis. Since a proton translocating ATPase may be present in the luminal membrane the observations are consistent with the possibility that cortical I cells participate in the maintenance of acid/base homeostasis.</p></div>\",\"PeriodicalId\":17593,\"journal\":{\"name\":\"Journal of ultrastructure research\",\"volume\":\"92 1\",\"pages\":\"Pages 119-131\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0889-1605(85)90133-8\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ultrastructure research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0889160585901338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ultrastructure research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0889160585901338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structural adaptation of intercalated cells in rat renal cortex to acute metabolic acidosis and alkalosis
The structural responses of cells in the distal convoluted, connecting, and collecting tubule to acute acid/base changes were investigated by electron microscopy. Acute metabolic acidosis was induced by administration of ammonium chloride, and acute metabolic alkalosis by potassium or sodium bicarbonate. Morphometric analyses were performed on micrographs of randomly selected distal nephron cells. No structural responses were found in distal convoluted tubule cells, connecting tubule cells, or principal cells but prominent changes were observed in intercalated cells (I cells). Thus, the surface density of the luminal membrane in I cells was significantly higher in acidotic animals and lower in KHCO3 alkalotic animals than in controls. On the contrary, the surface density of the membrane that bounds apical vesicles was higher in KHCO3 alkalotic and lower in acidotic animals than in controls. These results suggest that the luminal membrane is internalized during alkalosis and that the membrane that bounds apical vesicles is transferred to the luminal membrane during acidosis. Since a proton translocating ATPase may be present in the luminal membrane the observations are consistent with the possibility that cortical I cells participate in the maintenance of acid/base homeostasis.