边缘核的超微结构研究,蛇的脊髓内在的机械感受器。

D M Schroeder
{"title":"边缘核的超微结构研究,蛇的脊髓内在的机械感受器。","authors":"D M Schroeder","doi":"10.3109/07367228609144602","DOIUrl":null,"url":null,"abstract":"<p><p>Previously reported anatomical and electrophysiological studies have shown that there are neurons in the lamprey's spinal cord that respond to stretching of the spinal cord. Neurons in similar locations are especially prominent in reptiles, where they form the marginal nuclei. These nuclei have been examined in snakes, and it has become apparent that the denticulate ligament is both structurally and functionally closely related to the marginal nuclei. The ligament loses collagen in a short segment of every intervertebral area, and the marginal nuclei are located only in this area. The marginal nuclei consist of a group of medium-sized neurons along the edge of the spinal cord, with a strip of neuropil separating them from the ligament; the neurons extend dendritic processes into this lateral neuropil area and give rise to long finger-like processes. In the present study, these processes were found to be longer than the ones that have been described for peripheral mechanoreceptors; they are thought to be important in sensory transduction. Closely associated with these processes were axon-like structures. They did not make any type of contact with the finger-like processes; however, an occasional synaptic-like contact, consisting of membrane specialization and a congregation of vesicles, was made with dendritic processes. The conclusion is that these finger-like processes are similar to those of peripheral mechanoreceptors, but that there is no equivalent process to the axon-like structure.</p>","PeriodicalId":77800,"journal":{"name":"Somatosensory research","volume":"4 2","pages":"127-40"},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/07367228609144602","citationCount":"17","resultStr":"{\"title\":\"An ultrastructural study of the marginal nucleus, the intrinsic mechanoreceptor of the snake's spinal cord.\",\"authors\":\"D M Schroeder\",\"doi\":\"10.3109/07367228609144602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previously reported anatomical and electrophysiological studies have shown that there are neurons in the lamprey's spinal cord that respond to stretching of the spinal cord. Neurons in similar locations are especially prominent in reptiles, where they form the marginal nuclei. These nuclei have been examined in snakes, and it has become apparent that the denticulate ligament is both structurally and functionally closely related to the marginal nuclei. The ligament loses collagen in a short segment of every intervertebral area, and the marginal nuclei are located only in this area. The marginal nuclei consist of a group of medium-sized neurons along the edge of the spinal cord, with a strip of neuropil separating them from the ligament; the neurons extend dendritic processes into this lateral neuropil area and give rise to long finger-like processes. In the present study, these processes were found to be longer than the ones that have been described for peripheral mechanoreceptors; they are thought to be important in sensory transduction. Closely associated with these processes were axon-like structures. They did not make any type of contact with the finger-like processes; however, an occasional synaptic-like contact, consisting of membrane specialization and a congregation of vesicles, was made with dendritic processes. The conclusion is that these finger-like processes are similar to those of peripheral mechanoreceptors, but that there is no equivalent process to the axon-like structure.</p>\",\"PeriodicalId\":77800,\"journal\":{\"name\":\"Somatosensory research\",\"volume\":\"4 2\",\"pages\":\"127-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/07367228609144602\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Somatosensory research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/07367228609144602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Somatosensory research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/07367228609144602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

先前报道的解剖学和电生理学研究表明,七鳃鳗的脊髓中有神经元对脊髓的拉伸做出反应。类似位置的神经元在爬行动物中特别突出,它们在那里形成边缘核。这些核已经在蛇身上被检查过,它已经变得很明显,小齿韧带在结构上和功能上都与边缘核密切相关。韧带在每个椎间区域的一小段丢失胶原蛋白,边缘核仅位于该区域。边缘核由沿脊髓边缘的一组中等大小的神经元组成,有一条神经膜将它们与韧带隔开;神经元将树突状突起延伸到外侧神经区,形成长长的手指状突起。在目前的研究中,发现这些过程比外周机械感受器所描述的过程更长;它们被认为在感觉传导中很重要。与这些过程密切相关的是轴突样结构。他们没有与指状突起进行任何形式的接触;然而,偶尔的突触样接触,由膜特化和囊泡聚集组成,由树突过程形成。结论是,这些指状过程类似于外周机械感受器的过程,但不存在与轴突样结构等效的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ultrastructural study of the marginal nucleus, the intrinsic mechanoreceptor of the snake's spinal cord.

Previously reported anatomical and electrophysiological studies have shown that there are neurons in the lamprey's spinal cord that respond to stretching of the spinal cord. Neurons in similar locations are especially prominent in reptiles, where they form the marginal nuclei. These nuclei have been examined in snakes, and it has become apparent that the denticulate ligament is both structurally and functionally closely related to the marginal nuclei. The ligament loses collagen in a short segment of every intervertebral area, and the marginal nuclei are located only in this area. The marginal nuclei consist of a group of medium-sized neurons along the edge of the spinal cord, with a strip of neuropil separating them from the ligament; the neurons extend dendritic processes into this lateral neuropil area and give rise to long finger-like processes. In the present study, these processes were found to be longer than the ones that have been described for peripheral mechanoreceptors; they are thought to be important in sensory transduction. Closely associated with these processes were axon-like structures. They did not make any type of contact with the finger-like processes; however, an occasional synaptic-like contact, consisting of membrane specialization and a congregation of vesicles, was made with dendritic processes. The conclusion is that these finger-like processes are similar to those of peripheral mechanoreceptors, but that there is no equivalent process to the axon-like structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信