{"title":"人成纤维细胞修复DNA的内源性核酸酶敏感性","authors":"Audrey N. Player, G.J. Kantor","doi":"10.1016/0167-8817(87)90074-5","DOIUrl":null,"url":null,"abstract":"<div><p>The limited DNA excision repair that occurs in the chromatin of UV-irradiated growth arrested cells isolated from a xeroderma pigmentosum (XP) complementation group C patient is clustered in localized regions. The repaired DNA was found to be more sensitive to nicking by endogenous nucleases than the bulk of the DNA. The extra-sensitivity does not change with increasing amounts of DNA damage or repair activity in the locally-repaired regions and is retained through a 24-h chase period. We suggest that these results are due to the occurrence of DNA repair limited to pre-existing, non-transient chromatin fractions that contain actively transcribed DNA. A similar extra-sensitivity of repaired DNA was not detected in cells of normal or XP complementation group A strains that exhibit either normal or limited repair located randomly throughout their genomes. The association between endogenous nuclease sensitivity and clustered repair probably defines a normal excision repair pathway that is specific for selected chromatin domains. The repair defect in XP-C strains may be one in pathways targeted for other endogenous nuclease-resistant domains.</p></div>","PeriodicalId":100936,"journal":{"name":"Mutation Research/DNA Repair Reports","volume":"184 2","pages":"Pages 169-178"},"PeriodicalIF":0.0000,"publicationDate":"1987-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-8817(87)90074-5","citationCount":"8","resultStr":"{\"title\":\"The endogenous nuclease sensitivity of repaired DNA in human fibroblasts\",\"authors\":\"Audrey N. Player, G.J. Kantor\",\"doi\":\"10.1016/0167-8817(87)90074-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The limited DNA excision repair that occurs in the chromatin of UV-irradiated growth arrested cells isolated from a xeroderma pigmentosum (XP) complementation group C patient is clustered in localized regions. The repaired DNA was found to be more sensitive to nicking by endogenous nucleases than the bulk of the DNA. The extra-sensitivity does not change with increasing amounts of DNA damage or repair activity in the locally-repaired regions and is retained through a 24-h chase period. We suggest that these results are due to the occurrence of DNA repair limited to pre-existing, non-transient chromatin fractions that contain actively transcribed DNA. A similar extra-sensitivity of repaired DNA was not detected in cells of normal or XP complementation group A strains that exhibit either normal or limited repair located randomly throughout their genomes. The association between endogenous nuclease sensitivity and clustered repair probably defines a normal excision repair pathway that is specific for selected chromatin domains. The repair defect in XP-C strains may be one in pathways targeted for other endogenous nuclease-resistant domains.</p></div>\",\"PeriodicalId\":100936,\"journal\":{\"name\":\"Mutation Research/DNA Repair Reports\",\"volume\":\"184 2\",\"pages\":\"Pages 169-178\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0167-8817(87)90074-5\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research/DNA Repair Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0167881787900745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNA Repair Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0167881787900745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The endogenous nuclease sensitivity of repaired DNA in human fibroblasts
The limited DNA excision repair that occurs in the chromatin of UV-irradiated growth arrested cells isolated from a xeroderma pigmentosum (XP) complementation group C patient is clustered in localized regions. The repaired DNA was found to be more sensitive to nicking by endogenous nucleases than the bulk of the DNA. The extra-sensitivity does not change with increasing amounts of DNA damage or repair activity in the locally-repaired regions and is retained through a 24-h chase period. We suggest that these results are due to the occurrence of DNA repair limited to pre-existing, non-transient chromatin fractions that contain actively transcribed DNA. A similar extra-sensitivity of repaired DNA was not detected in cells of normal or XP complementation group A strains that exhibit either normal or limited repair located randomly throughout their genomes. The association between endogenous nuclease sensitivity and clustered repair probably defines a normal excision repair pathway that is specific for selected chromatin domains. The repair defect in XP-C strains may be one in pathways targeted for other endogenous nuclease-resistant domains.