{"title":"DNA聚合酶参与培养的中国仓鼠细胞中苯并[a]芘DNA损伤的修复","authors":"Fuminori Otsuka, Takafumi Ochi, Motoyasu Ohsawa","doi":"10.1016/0167-8817(87)90036-8","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanisms for induction of single-strand scissions in DNA by S9-activated benzo[<em>a</em>]pyrene (B[a]P) and their repair in cultured Chinese hamster V79 cells were investigated with inhibitors of DNA-repair synthesis using alkaline sucrose gradient sedimentation analysis.</p><p>The marked induction of single-strand scissions in DNA was observed following 3 h treatment of V79 cells with 5 μg/ml of B[a]P. These DNA lesions were repaired to the control level within 4 h after removal of B[a]P. The simultaneous addition of inhibitors of DNA-repair synthesis, 1-β-<span>D</span>-arabinofuranosylcytosine (araC) plus hydroxyurea with B[a]P did not increase the formation of DNA single-strand scissions. When these inhibitors were added after removal of B[a]P, however, they significantly blocked the rejoining of DNA-strand scissions. On the other hand, when aphidicolin, a specific inhibitor of DNA polymerase α, was used instead of araC, a partial inhibition of the rejoining was observed, and further addition of 2′,3′-dideoxythymidine, an inhibitor of DNA polymerase β, augmented the inhibitory effect. These results indicate that B[a]P-induced single-strand scissions of DNA in V79 cells could be repaired mostly by excision repair which involved DNA polymerase α and a non-α polymerase, presumably polymerase β.</p></div>","PeriodicalId":100936,"journal":{"name":"Mutation Research/DNA Repair Reports","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1987-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-8817(87)90036-8","citationCount":"6","resultStr":"{\"title\":\"Involvement of DNA polymerases in the repair of DNA damage by benzo[a]pyrene in cultured Chinese hamster cells\",\"authors\":\"Fuminori Otsuka, Takafumi Ochi, Motoyasu Ohsawa\",\"doi\":\"10.1016/0167-8817(87)90036-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mechanisms for induction of single-strand scissions in DNA by S9-activated benzo[<em>a</em>]pyrene (B[a]P) and their repair in cultured Chinese hamster V79 cells were investigated with inhibitors of DNA-repair synthesis using alkaline sucrose gradient sedimentation analysis.</p><p>The marked induction of single-strand scissions in DNA was observed following 3 h treatment of V79 cells with 5 μg/ml of B[a]P. These DNA lesions were repaired to the control level within 4 h after removal of B[a]P. The simultaneous addition of inhibitors of DNA-repair synthesis, 1-β-<span>D</span>-arabinofuranosylcytosine (araC) plus hydroxyurea with B[a]P did not increase the formation of DNA single-strand scissions. When these inhibitors were added after removal of B[a]P, however, they significantly blocked the rejoining of DNA-strand scissions. On the other hand, when aphidicolin, a specific inhibitor of DNA polymerase α, was used instead of araC, a partial inhibition of the rejoining was observed, and further addition of 2′,3′-dideoxythymidine, an inhibitor of DNA polymerase β, augmented the inhibitory effect. These results indicate that B[a]P-induced single-strand scissions of DNA in V79 cells could be repaired mostly by excision repair which involved DNA polymerase α and a non-α polymerase, presumably polymerase β.</p></div>\",\"PeriodicalId\":100936,\"journal\":{\"name\":\"Mutation Research/DNA Repair Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0167-8817(87)90036-8\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research/DNA Repair Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0167881787900368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNA Repair Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0167881787900368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
摘要
采用碱性蔗糖梯度沉降法研究了s9激活的苯并[a]芘(B[a]P)诱导DNA单链断裂及其在培养的中国仓鼠V79细胞中的修复机制。5 μg/ml的B[a]P作用于V79细胞3 h后,观察到DNA单链断裂的明显诱导。这些DNA损伤在去除B[a]P后4 h内修复至对照水平。同时加入DNA修复合成抑制剂,1-β- d -阿拉伯糖醛酸胞嘧啶(araC)和羟基脲与B[a]P并没有增加DNA单链断裂的形成。然而,当这些抑制剂在去除B[a]P后加入时,它们显著阻断了dna链断裂的重新连接。另一方面,当DNA聚合酶α特异性抑制剂aphidicolin代替araC时,观察到重新连接的部分抑制,并且进一步添加DNA聚合酶β抑制剂2 ',3 ' -二脱氧胸腺嘧啶增强了抑制作用。这些结果表明,B[a] p诱导的V79细胞DNA单链断裂主要可以通过DNA聚合酶α和非α聚合酶(推测为聚合酶β)的切除修复来修复。
Involvement of DNA polymerases in the repair of DNA damage by benzo[a]pyrene in cultured Chinese hamster cells
Mechanisms for induction of single-strand scissions in DNA by S9-activated benzo[a]pyrene (B[a]P) and their repair in cultured Chinese hamster V79 cells were investigated with inhibitors of DNA-repair synthesis using alkaline sucrose gradient sedimentation analysis.
The marked induction of single-strand scissions in DNA was observed following 3 h treatment of V79 cells with 5 μg/ml of B[a]P. These DNA lesions were repaired to the control level within 4 h after removal of B[a]P. The simultaneous addition of inhibitors of DNA-repair synthesis, 1-β-D-arabinofuranosylcytosine (araC) plus hydroxyurea with B[a]P did not increase the formation of DNA single-strand scissions. When these inhibitors were added after removal of B[a]P, however, they significantly blocked the rejoining of DNA-strand scissions. On the other hand, when aphidicolin, a specific inhibitor of DNA polymerase α, was used instead of araC, a partial inhibition of the rejoining was observed, and further addition of 2′,3′-dideoxythymidine, an inhibitor of DNA polymerase β, augmented the inhibitory effect. These results indicate that B[a]P-induced single-strand scissions of DNA in V79 cells could be repaired mostly by excision repair which involved DNA polymerase α and a non-α polymerase, presumably polymerase β.