Anna T. Viau, Abraham Abuchowski, Sylvia Greenspan, Frank F. Davis
{"title":"自由基清除剂聚乙二醇过氧化氢酶和聚乙二醇超氧化物歧化酶的安全性评价","authors":"Anna T. Viau, Abraham Abuchowski, Sylvia Greenspan, Frank F. Davis","doi":"10.1016/S0748-5514(86)80011-3","DOIUrl":null,"url":null,"abstract":"<div><p>Treatment with catalase and SOD (superoxide dismutase) could diminish the damage due to oxygen free radical formation, but these enzymes are rapidly removed from circulation. The covalent attachment of monomethoxypolyethylene glycol (PEG) to catalase and SOD extended their plasma half-lives. Toxicity of PEG-catalase and PEG-SOD was evaluated in mice and rats prior to their use as free radical scavengers. Rodents used in acute, subacute, and subchronic toxicologic studies could tolerate large doses of PEG-catalase and PEG-SOD without developing toxic signs. The conjugates did not affect survival rate, appearance, behavior, food intake, blood chemistry, hematology, or urinalysis. In general, body weight gains, organ weights, and histomorphology were also unaffected. Massive doses of PEG-catalase caused slight weight loss, splenic hypertrophy, and generalized splenic stimulation in mice. Massive doses of PEG-SOD resulted in vacuolation in splenic macrophages in rats. PEG-catalase and PEG-SOD circulated for 3 days and 8 days, respectively, in mice following i.v. or i.m. administration.</p></div>","PeriodicalId":77737,"journal":{"name":"Journal of free radicals in biology & medicine","volume":"2 4","pages":"Pages 283-288"},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0748-5514(86)80011-3","citationCount":"46","resultStr":"{\"title\":\"Safety evaluation of free radical scavengers peg-catalase and peg-superoxide dismutase\",\"authors\":\"Anna T. Viau, Abraham Abuchowski, Sylvia Greenspan, Frank F. Davis\",\"doi\":\"10.1016/S0748-5514(86)80011-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Treatment with catalase and SOD (superoxide dismutase) could diminish the damage due to oxygen free radical formation, but these enzymes are rapidly removed from circulation. The covalent attachment of monomethoxypolyethylene glycol (PEG) to catalase and SOD extended their plasma half-lives. Toxicity of PEG-catalase and PEG-SOD was evaluated in mice and rats prior to their use as free radical scavengers. Rodents used in acute, subacute, and subchronic toxicologic studies could tolerate large doses of PEG-catalase and PEG-SOD without developing toxic signs. The conjugates did not affect survival rate, appearance, behavior, food intake, blood chemistry, hematology, or urinalysis. In general, body weight gains, organ weights, and histomorphology were also unaffected. Massive doses of PEG-catalase caused slight weight loss, splenic hypertrophy, and generalized splenic stimulation in mice. Massive doses of PEG-SOD resulted in vacuolation in splenic macrophages in rats. PEG-catalase and PEG-SOD circulated for 3 days and 8 days, respectively, in mice following i.v. or i.m. administration.</p></div>\",\"PeriodicalId\":77737,\"journal\":{\"name\":\"Journal of free radicals in biology & medicine\",\"volume\":\"2 4\",\"pages\":\"Pages 283-288\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0748-5514(86)80011-3\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of free radicals in biology & medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0748551486800113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of free radicals in biology & medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0748551486800113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Safety evaluation of free radical scavengers peg-catalase and peg-superoxide dismutase
Treatment with catalase and SOD (superoxide dismutase) could diminish the damage due to oxygen free radical formation, but these enzymes are rapidly removed from circulation. The covalent attachment of monomethoxypolyethylene glycol (PEG) to catalase and SOD extended their plasma half-lives. Toxicity of PEG-catalase and PEG-SOD was evaluated in mice and rats prior to their use as free radical scavengers. Rodents used in acute, subacute, and subchronic toxicologic studies could tolerate large doses of PEG-catalase and PEG-SOD without developing toxic signs. The conjugates did not affect survival rate, appearance, behavior, food intake, blood chemistry, hematology, or urinalysis. In general, body weight gains, organ weights, and histomorphology were also unaffected. Massive doses of PEG-catalase caused slight weight loss, splenic hypertrophy, and generalized splenic stimulation in mice. Massive doses of PEG-SOD resulted in vacuolation in splenic macrophages in rats. PEG-catalase and PEG-SOD circulated for 3 days and 8 days, respectively, in mice following i.v. or i.m. administration.