WDAE-GAN:一种混合双自编码器和小波去噪生成对抗框架用于信用卡欺诈检测

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Masoud RezvaniNejad , Ali Sabzali Yameqani
{"title":"WDAE-GAN:一种混合双自编码器和小波去噪生成对抗框架用于信用卡欺诈检测","authors":"Masoud RezvaniNejad ,&nbsp;Ali Sabzali Yameqani","doi":"10.1016/j.eswa.2025.130078","DOIUrl":null,"url":null,"abstract":"<div><div>Credit card fraud detection remains a critical challenge due to the severe class imbalance in real-world transaction datasets, where fraudulent cases represent only a minute fraction of total records. This study proposes WDAE-GAN, a hybrid detection framework that combines a Wasserstein Generative Adversarial Network (WGAN), dual autoencoders, wavelet-based denoising, and CatBoost classification. In this approach, the WGAN generates realistic synthetic fraud samples to augment the minority class, while dual autoencoders learn distinct latent representations from normal and fraud-augmented data. The concatenated latent features are refined through wavelet denoising before final classification by CatBoost, enhancing feature quality and reducing noise. Experimental results on two benchmark datasets—the European Credit Card Fraud Detection dataset and the IEEE-CIS Fraud Detection dataset—demonstrate that WDAE-GAN achieves near-perfect detection performance. On the European dataset, the model achieved a recall of 0.9999, precision of 0.9999, F1-score of 0.9999, AUC of 1.0000, and AUPRC of 0.9994. On the IEEE-CIS dataset, WDAE-GAN obtained a recall of 0.9994, precision of 0.9994, F1-score of 0.9994, AUC of 1.0000, and AUPRC of 0.9999. These results show that the proposed model not only delivers exceptional detection accuracy but also performs competitively against state-of-the-art methods, effectively identifying rare fraud instances while maintaining an extremely low false-positive rate. This confirms WDAE-GAN’s robustness and scalability for real-world financial fraud detection applications.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"299 ","pages":"Article 130078"},"PeriodicalIF":7.5000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WDAE-GAN: A hybrid dual autoencoder and generative adversarial framework with wavelet denoising for credit card fraud detection\",\"authors\":\"Masoud RezvaniNejad ,&nbsp;Ali Sabzali Yameqani\",\"doi\":\"10.1016/j.eswa.2025.130078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Credit card fraud detection remains a critical challenge due to the severe class imbalance in real-world transaction datasets, where fraudulent cases represent only a minute fraction of total records. This study proposes WDAE-GAN, a hybrid detection framework that combines a Wasserstein Generative Adversarial Network (WGAN), dual autoencoders, wavelet-based denoising, and CatBoost classification. In this approach, the WGAN generates realistic synthetic fraud samples to augment the minority class, while dual autoencoders learn distinct latent representations from normal and fraud-augmented data. The concatenated latent features are refined through wavelet denoising before final classification by CatBoost, enhancing feature quality and reducing noise. Experimental results on two benchmark datasets—the European Credit Card Fraud Detection dataset and the IEEE-CIS Fraud Detection dataset—demonstrate that WDAE-GAN achieves near-perfect detection performance. On the European dataset, the model achieved a recall of 0.9999, precision of 0.9999, F1-score of 0.9999, AUC of 1.0000, and AUPRC of 0.9994. On the IEEE-CIS dataset, WDAE-GAN obtained a recall of 0.9994, precision of 0.9994, F1-score of 0.9994, AUC of 1.0000, and AUPRC of 0.9999. These results show that the proposed model not only delivers exceptional detection accuracy but also performs competitively against state-of-the-art methods, effectively identifying rare fraud instances while maintaining an extremely low false-positive rate. This confirms WDAE-GAN’s robustness and scalability for real-world financial fraud detection applications.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"299 \",\"pages\":\"Article 130078\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417425036942\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425036942","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于现实世界交易数据集中严重的类别不平衡,信用卡欺诈检测仍然是一个关键的挑战,其中欺诈案件仅占总记录的一小部分。本研究提出了WDAE-GAN,这是一种混合检测框架,结合了Wasserstein生成对抗网络(WGAN)、双自编码器、基于小波的去噪和CatBoost分类。在这种方法中,WGAN生成真实的合成欺诈样本来增强少数类,而双自编码器从正常和欺诈增强数据中学习不同的潜在表示。在CatBoost进行最终分类之前,对连接的潜在特征进行小波去噪,提高特征质量,降低噪声。在两个基准数据集(欧洲信用卡欺诈检测数据集和IEEE-CIS欺诈检测数据集)上的实验结果表明,WDAE-GAN实现了近乎完美的检测性能。在欧洲数据集上,该模型的召回率为0.9999,精度为0.9999,f1分数为0.9999,AUC为1.000,AUPRC为0.9994。在IEEE-CIS数据集上,WDAE-GAN的召回率为0.9994,精度为0.9994,f1得分为0.9994,AUC为1.000,AUPRC为0.9999。这些结果表明,所提出的模型不仅提供了卓越的检测精度,而且与最先进的方法相比具有竞争力,有效地识别罕见的欺诈实例,同时保持极低的假阳性率。这证实了WDAE-GAN在现实世界金融欺诈检测应用中的鲁棒性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WDAE-GAN: A hybrid dual autoencoder and generative adversarial framework with wavelet denoising for credit card fraud detection
Credit card fraud detection remains a critical challenge due to the severe class imbalance in real-world transaction datasets, where fraudulent cases represent only a minute fraction of total records. This study proposes WDAE-GAN, a hybrid detection framework that combines a Wasserstein Generative Adversarial Network (WGAN), dual autoencoders, wavelet-based denoising, and CatBoost classification. In this approach, the WGAN generates realistic synthetic fraud samples to augment the minority class, while dual autoencoders learn distinct latent representations from normal and fraud-augmented data. The concatenated latent features are refined through wavelet denoising before final classification by CatBoost, enhancing feature quality and reducing noise. Experimental results on two benchmark datasets—the European Credit Card Fraud Detection dataset and the IEEE-CIS Fraud Detection dataset—demonstrate that WDAE-GAN achieves near-perfect detection performance. On the European dataset, the model achieved a recall of 0.9999, precision of 0.9999, F1-score of 0.9999, AUC of 1.0000, and AUPRC of 0.9994. On the IEEE-CIS dataset, WDAE-GAN obtained a recall of 0.9994, precision of 0.9994, F1-score of 0.9994, AUC of 1.0000, and AUPRC of 0.9999. These results show that the proposed model not only delivers exceptional detection accuracy but also performs competitively against state-of-the-art methods, effectively identifying rare fraud instances while maintaining an extremely low false-positive rate. This confirms WDAE-GAN’s robustness and scalability for real-world financial fraud detection applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信