{"title":"探索用于光电应用的卤化物钙钛矿InXI3 (X=Ge, Sn, Pb)的结构、电子、光学和热力学性质","authors":"B. Belouad, A. Bouhmouche, R. Moubah","doi":"10.1016/j.ssc.2025.116210","DOIUrl":null,"url":null,"abstract":"<div><div>We report on the structural, electronic, optical and thermodynamic properties of halide perovskites InXI<sub>3</sub> (X = Pb,Ge,Sn). The structural optimization revealed that all compounds adopt a cubic symmetry, with a gradual increase in the lattice constant from Ge to Pb, consistent with the increasing ionic radii of the X-site cations. The electronic band structure calculations reveal that each material possesses a direct band gap located at the R point, with values of 0.972 eV for InGeI<sub>3</sub>, 0.807 eV for InSnI<sub>3</sub>, and 1.636 eV for InPbI<sub>3</sub>. Density of states analysis shows that the conduction band edge is primarily composed of In-5p and X-site p orbitals, whereas the valence band maximum is largely influenced by the iodine 5p states, highlighting the critical role of halogen contributions in the electronic structure. The optical analysis shows that the static refractive index n(0) decreases from 3.15 to 2.97 2.57, when passing from Ge to Pb with a high absorption coefficient in the range of 10<sup>5</sup> cm<sup>−1</sup> for all the studied perovskites. Thermodynamic analyses of heat capacity and entropy highlight how X site substitution influences lattice dynamics and thermal stability, confirming the materials resilience to temperature changes. These results properties position InXI<sub>3</sub> compounds as promising candidates for next-generation energy harvesting and optoelectronic applications.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"406 ","pages":"Article 116210"},"PeriodicalIF":2.4000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the structural, electronic, optical and thermodynamic properties of halide perovskites InXI3 (X=Ge, Sn, Pb) for optoelectronic applications\",\"authors\":\"B. Belouad, A. Bouhmouche, R. Moubah\",\"doi\":\"10.1016/j.ssc.2025.116210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We report on the structural, electronic, optical and thermodynamic properties of halide perovskites InXI<sub>3</sub> (X = Pb,Ge,Sn). The structural optimization revealed that all compounds adopt a cubic symmetry, with a gradual increase in the lattice constant from Ge to Pb, consistent with the increasing ionic radii of the X-site cations. The electronic band structure calculations reveal that each material possesses a direct band gap located at the R point, with values of 0.972 eV for InGeI<sub>3</sub>, 0.807 eV for InSnI<sub>3</sub>, and 1.636 eV for InPbI<sub>3</sub>. Density of states analysis shows that the conduction band edge is primarily composed of In-5p and X-site p orbitals, whereas the valence band maximum is largely influenced by the iodine 5p states, highlighting the critical role of halogen contributions in the electronic structure. The optical analysis shows that the static refractive index n(0) decreases from 3.15 to 2.97 2.57, when passing from Ge to Pb with a high absorption coefficient in the range of 10<sup>5</sup> cm<sup>−1</sup> for all the studied perovskites. Thermodynamic analyses of heat capacity and entropy highlight how X site substitution influences lattice dynamics and thermal stability, confirming the materials resilience to temperature changes. These results properties position InXI<sub>3</sub> compounds as promising candidates for next-generation energy harvesting and optoelectronic applications.</div></div>\",\"PeriodicalId\":430,\"journal\":{\"name\":\"Solid State Communications\",\"volume\":\"406 \",\"pages\":\"Article 116210\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038109825003850\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109825003850","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Exploring the structural, electronic, optical and thermodynamic properties of halide perovskites InXI3 (X=Ge, Sn, Pb) for optoelectronic applications
We report on the structural, electronic, optical and thermodynamic properties of halide perovskites InXI3 (X = Pb,Ge,Sn). The structural optimization revealed that all compounds adopt a cubic symmetry, with a gradual increase in the lattice constant from Ge to Pb, consistent with the increasing ionic radii of the X-site cations. The electronic band structure calculations reveal that each material possesses a direct band gap located at the R point, with values of 0.972 eV for InGeI3, 0.807 eV for InSnI3, and 1.636 eV for InPbI3. Density of states analysis shows that the conduction band edge is primarily composed of In-5p and X-site p orbitals, whereas the valence band maximum is largely influenced by the iodine 5p states, highlighting the critical role of halogen contributions in the electronic structure. The optical analysis shows that the static refractive index n(0) decreases from 3.15 to 2.97 2.57, when passing from Ge to Pb with a high absorption coefficient in the range of 105 cm−1 for all the studied perovskites. Thermodynamic analyses of heat capacity and entropy highlight how X site substitution influences lattice dynamics and thermal stability, confirming the materials resilience to temperature changes. These results properties position InXI3 compounds as promising candidates for next-generation energy harvesting and optoelectronic applications.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.