用神经符号回归发现网络动力学。

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zihan Yu, Jingtao Ding, Yong Li
{"title":"用神经符号回归发现网络动力学。","authors":"Zihan Yu, Jingtao Ding, Yong Li","doi":"10.1038/s43588-025-00893-8","DOIUrl":null,"url":null,"abstract":"<p><p>Network dynamics are fundamental to analyzing the properties of high-dimensional complex systems and understanding their behavior. Despite the accumulation of observational data across many domains, mathematical models exist in only a few areas with clear underlying principles. Here we show that a neural symbolic regression approach can bridge this gap by automatically deriving formulas from data. Our method reduces searches on high-dimensional networks to equivalent one-dimensional systems and uses pretrained neural networks to guide accurate formula discovery. Applied to ten benchmark systems, it recovers the correct forms and parameters of underlying dynamics. In two empirical natural systems, it corrects existing models of gene regulation and microbial communities, reducing prediction error by 59.98% and 55.94%, respectively. In epidemic transmission across human mobility networks of various scales, it discovers dynamics that exhibit the same power-law distribution of node correlations across scales and reveal country-level differences in intervention effects. These results demonstrate that machine-driven discovery of network dynamics can enhance understandings of complex systems and advance the development of complexity science.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":18.3000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discover network dynamics with neural symbolic regression.\",\"authors\":\"Zihan Yu, Jingtao Ding, Yong Li\",\"doi\":\"10.1038/s43588-025-00893-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Network dynamics are fundamental to analyzing the properties of high-dimensional complex systems and understanding their behavior. Despite the accumulation of observational data across many domains, mathematical models exist in only a few areas with clear underlying principles. Here we show that a neural symbolic regression approach can bridge this gap by automatically deriving formulas from data. Our method reduces searches on high-dimensional networks to equivalent one-dimensional systems and uses pretrained neural networks to guide accurate formula discovery. Applied to ten benchmark systems, it recovers the correct forms and parameters of underlying dynamics. In two empirical natural systems, it corrects existing models of gene regulation and microbial communities, reducing prediction error by 59.98% and 55.94%, respectively. In epidemic transmission across human mobility networks of various scales, it discovers dynamics that exhibit the same power-law distribution of node correlations across scales and reveal country-level differences in intervention effects. These results demonstrate that machine-driven discovery of network dynamics can enhance understandings of complex systems and advance the development of complexity science.</p>\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":18.3000,\"publicationDate\":\"2025-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43588-025-00893-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00893-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

网络动力学是分析高维复杂系统特性和理解其行为的基础。尽管在许多领域积累了观测数据,但只有少数领域存在具有明确基本原理的数学模型。在这里,我们展示了一种神经符号回归方法可以通过自动从数据中导出公式来弥补这一差距。我们的方法将高维网络的搜索减少到等效的一维系统,并使用预训练的神经网络来指导精确的公式发现。将其应用于10个基准系统,恢复了底层动力学的正确形式和参数。在两个经验自然系统中,修正了现有的基因调控模型和微生物群落模型,预测误差分别降低了59.98%和55.94%。在不同规模的人类流动网络中的流行病传播中,它发现了在不同规模的节点相关性中表现出相同幂律分布的动态,并揭示了干预效果在国家层面上的差异。这些结果表明,机器驱动的网络动力学发现可以增强对复杂系统的理解,并推动复杂性科学的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discover network dynamics with neural symbolic regression.

Network dynamics are fundamental to analyzing the properties of high-dimensional complex systems and understanding their behavior. Despite the accumulation of observational data across many domains, mathematical models exist in only a few areas with clear underlying principles. Here we show that a neural symbolic regression approach can bridge this gap by automatically deriving formulas from data. Our method reduces searches on high-dimensional networks to equivalent one-dimensional systems and uses pretrained neural networks to guide accurate formula discovery. Applied to ten benchmark systems, it recovers the correct forms and parameters of underlying dynamics. In two empirical natural systems, it corrects existing models of gene regulation and microbial communities, reducing prediction error by 59.98% and 55.94%, respectively. In epidemic transmission across human mobility networks of various scales, it discovers dynamics that exhibit the same power-law distribution of node correlations across scales and reveal country-level differences in intervention effects. These results demonstrate that machine-driven discovery of network dynamics can enhance understandings of complex systems and advance the development of complexity science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信