对机器人行为的个性化因果解释。

IF 3 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2025-10-08 eCollection Date: 2025-01-01 DOI:10.3389/frobt.2025.1637574
José Galeas, Suna Bensch, Thomas Hellström, Antonio Bandera
{"title":"对机器人行为的个性化因果解释。","authors":"José Galeas, Suna Bensch, Thomas Hellström, Antonio Bandera","doi":"10.3389/frobt.2025.1637574","DOIUrl":null,"url":null,"abstract":"<p><p>The deployment of robots in environments shared with humans implies that they must be able to justify or explain their behavior to nonexpert users when the user, or the situation itself, requires it. We propose a framework for robots to generate personalized explanations of their behavior by integrating cause-and-effect structures, social roles, and natural language queries. Robot events are stored as cause-effect pairs in a causal log. Given a human natural language query, the system uses machine learning to identify the matching cause-and-effect entry in the causal log and determine the social role of the inquirer. An initial explanation is generated and is then further refined by a large language model (LLM) to produce linguistically diverse responses tailored to the social role and the query. This approach maintains causal and factual accuracy while providing language variation in the generated explanations. Qualitative and quantitative experiments show that combining the causal information with the social role and the query when generating the explanations yields the most appreciated explanations.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1637574"},"PeriodicalIF":3.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12540097/pdf/","citationCount":"0","resultStr":"{\"title\":\"Personalized causal explanations of a robot's behavior.\",\"authors\":\"José Galeas, Suna Bensch, Thomas Hellström, Antonio Bandera\",\"doi\":\"10.3389/frobt.2025.1637574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The deployment of robots in environments shared with humans implies that they must be able to justify or explain their behavior to nonexpert users when the user, or the situation itself, requires it. We propose a framework for robots to generate personalized explanations of their behavior by integrating cause-and-effect structures, social roles, and natural language queries. Robot events are stored as cause-effect pairs in a causal log. Given a human natural language query, the system uses machine learning to identify the matching cause-and-effect entry in the causal log and determine the social role of the inquirer. An initial explanation is generated and is then further refined by a large language model (LLM) to produce linguistically diverse responses tailored to the social role and the query. This approach maintains causal and factual accuracy while providing language variation in the generated explanations. Qualitative and quantitative experiments show that combining the causal information with the social role and the query when generating the explanations yields the most appreciated explanations.</p>\",\"PeriodicalId\":47597,\"journal\":{\"name\":\"Frontiers in Robotics and AI\",\"volume\":\"12 \",\"pages\":\"1637574\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12540097/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Robotics and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frobt.2025.1637574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1637574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

在与人类共享的环境中部署机器人意味着,当用户或情况本身需要时,它们必须能够向非专业用户证明或解释它们的行为。我们提出了一个框架,通过整合因果结构、社会角色和自然语言查询,为机器人生成个性化的行为解释。机器人事件以因果对的形式存储在因果日志中。给定一个人类自然语言查询,系统使用机器学习来识别因果日志中匹配的因果条目,并确定询问者的社会角色。生成一个初始解释,然后由一个大型语言模型(LLM)进一步改进,以产生针对社会角色和查询的不同语言响应。这种方法保持因果关系和事实的准确性,同时在生成的解释中提供语言变化。定性和定量实验表明,在生成解释时,将因果信息与社会角色和查询相结合,可以产生最受欢迎的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personalized causal explanations of a robot's behavior.

The deployment of robots in environments shared with humans implies that they must be able to justify or explain their behavior to nonexpert users when the user, or the situation itself, requires it. We propose a framework for robots to generate personalized explanations of their behavior by integrating cause-and-effect structures, social roles, and natural language queries. Robot events are stored as cause-effect pairs in a causal log. Given a human natural language query, the system uses machine learning to identify the matching cause-and-effect entry in the causal log and determine the social role of the inquirer. An initial explanation is generated and is then further refined by a large language model (LLM) to produce linguistically diverse responses tailored to the social role and the query. This approach maintains causal and factual accuracy while providing language variation in the generated explanations. Qualitative and quantitative experiments show that combining the causal information with the social role and the query when generating the explanations yields the most appreciated explanations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信