José Galeas, Suna Bensch, Thomas Hellström, Antonio Bandera
{"title":"对机器人行为的个性化因果解释。","authors":"José Galeas, Suna Bensch, Thomas Hellström, Antonio Bandera","doi":"10.3389/frobt.2025.1637574","DOIUrl":null,"url":null,"abstract":"<p><p>The deployment of robots in environments shared with humans implies that they must be able to justify or explain their behavior to nonexpert users when the user, or the situation itself, requires it. We propose a framework for robots to generate personalized explanations of their behavior by integrating cause-and-effect structures, social roles, and natural language queries. Robot events are stored as cause-effect pairs in a causal log. Given a human natural language query, the system uses machine learning to identify the matching cause-and-effect entry in the causal log and determine the social role of the inquirer. An initial explanation is generated and is then further refined by a large language model (LLM) to produce linguistically diverse responses tailored to the social role and the query. This approach maintains causal and factual accuracy while providing language variation in the generated explanations. Qualitative and quantitative experiments show that combining the causal information with the social role and the query when generating the explanations yields the most appreciated explanations.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1637574"},"PeriodicalIF":3.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12540097/pdf/","citationCount":"0","resultStr":"{\"title\":\"Personalized causal explanations of a robot's behavior.\",\"authors\":\"José Galeas, Suna Bensch, Thomas Hellström, Antonio Bandera\",\"doi\":\"10.3389/frobt.2025.1637574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The deployment of robots in environments shared with humans implies that they must be able to justify or explain their behavior to nonexpert users when the user, or the situation itself, requires it. We propose a framework for robots to generate personalized explanations of their behavior by integrating cause-and-effect structures, social roles, and natural language queries. Robot events are stored as cause-effect pairs in a causal log. Given a human natural language query, the system uses machine learning to identify the matching cause-and-effect entry in the causal log and determine the social role of the inquirer. An initial explanation is generated and is then further refined by a large language model (LLM) to produce linguistically diverse responses tailored to the social role and the query. This approach maintains causal and factual accuracy while providing language variation in the generated explanations. Qualitative and quantitative experiments show that combining the causal information with the social role and the query when generating the explanations yields the most appreciated explanations.</p>\",\"PeriodicalId\":47597,\"journal\":{\"name\":\"Frontiers in Robotics and AI\",\"volume\":\"12 \",\"pages\":\"1637574\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12540097/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Robotics and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frobt.2025.1637574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1637574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Personalized causal explanations of a robot's behavior.
The deployment of robots in environments shared with humans implies that they must be able to justify or explain their behavior to nonexpert users when the user, or the situation itself, requires it. We propose a framework for robots to generate personalized explanations of their behavior by integrating cause-and-effect structures, social roles, and natural language queries. Robot events are stored as cause-effect pairs in a causal log. Given a human natural language query, the system uses machine learning to identify the matching cause-and-effect entry in the causal log and determine the social role of the inquirer. An initial explanation is generated and is then further refined by a large language model (LLM) to produce linguistically diverse responses tailored to the social role and the query. This approach maintains causal and factual accuracy while providing language variation in the generated explanations. Qualitative and quantitative experiments show that combining the causal information with the social role and the query when generating the explanations yields the most appreciated explanations.
期刊介绍:
Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.