{"title":"基于Wi-Fi 6的AIoT随机拥塞延迟鲁棒多任务本地客户端-服务器协同推理","authors":"Yuzhe Luo;Ji Qi;Ling Li;Ruizhi Chen;Xiaoyu Wu;Limin Cheng;Chen Zhao","doi":"10.1109/TPDS.2025.3619775","DOIUrl":null,"url":null,"abstract":"The rapid growth of AIoT devices brings huge demands for DNNs deployed on resource-constrained devices. However, the intensive computation and high memory footprint of DNN inference make it difficult for the AIoT devices to execute the inference tasks efficiently. In many widely deployed AIoT use cases, multiple local AIoT devices launch DNN inference tasks randomly. Although local collaborative inference has been proposed to accelerate DNN inference on local devices with limited resources, multitasking local collaborative inference, which is common in AIoT scenarios, has not been fully studied in previous works. We consider multitasking local client-server collaborative inference (MLCCI), which achieves efficient DNN inference by offloading the inference tasks from multiple AIoT devices to a more powerful local server with parallel pipelined execution streams through Wi-Fi 6. Our optimization goal is to minimize the mean end-to-end latency of MLCCI. Based on the experiment results, we identify three key challenges: high communication costs, high model initialization latency, and congestion delay brought by task interference. We analyze congestion delay in MLCCI and its stochastic fluctuations with queuing theory and propose Chorus, a high-performance adaptive MLCCI framework for AIoT devices, to minimize the mean end-to-end latency of MLCCI against stochastic congestion delay. Chorus generates communication-efficient model partitions with heuristic search, uses a prefetch-enabled two-level LRU cache to accelerate model initialization on the server, reduces congestion delay and its short-term fluctuations with execution stream allocation based on the cross-entropy method, and finally achieves efficient computation offloading with reinforcement learning. We established a system prototype, which statistically simulated many virtual clients with limited physical client devices to conduct performance evaluations, for Chorus with real devices. The evaluation results for various workload levels show that Chorus achieved an average of <inline-formula><tex-math>$1.4\\times$</tex-math></inline-formula>, <inline-formula><tex-math>$1.3\\times$</tex-math></inline-formula>, and <inline-formula><tex-math>$2\\times$</tex-math></inline-formula> speedup over client-only inference, and server-only inference with LRU and MLSH, respectively.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 12","pages":"2706-2723"},"PeriodicalIF":6.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chorus: Robust Multitasking Local Client-Server Collaborative Inference With Wi-Fi 6 for AIoT Against Stochastic Congestion Delay\",\"authors\":\"Yuzhe Luo;Ji Qi;Ling Li;Ruizhi Chen;Xiaoyu Wu;Limin Cheng;Chen Zhao\",\"doi\":\"10.1109/TPDS.2025.3619775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth of AIoT devices brings huge demands for DNNs deployed on resource-constrained devices. However, the intensive computation and high memory footprint of DNN inference make it difficult for the AIoT devices to execute the inference tasks efficiently. In many widely deployed AIoT use cases, multiple local AIoT devices launch DNN inference tasks randomly. Although local collaborative inference has been proposed to accelerate DNN inference on local devices with limited resources, multitasking local collaborative inference, which is common in AIoT scenarios, has not been fully studied in previous works. We consider multitasking local client-server collaborative inference (MLCCI), which achieves efficient DNN inference by offloading the inference tasks from multiple AIoT devices to a more powerful local server with parallel pipelined execution streams through Wi-Fi 6. Our optimization goal is to minimize the mean end-to-end latency of MLCCI. Based on the experiment results, we identify three key challenges: high communication costs, high model initialization latency, and congestion delay brought by task interference. We analyze congestion delay in MLCCI and its stochastic fluctuations with queuing theory and propose Chorus, a high-performance adaptive MLCCI framework for AIoT devices, to minimize the mean end-to-end latency of MLCCI against stochastic congestion delay. Chorus generates communication-efficient model partitions with heuristic search, uses a prefetch-enabled two-level LRU cache to accelerate model initialization on the server, reduces congestion delay and its short-term fluctuations with execution stream allocation based on the cross-entropy method, and finally achieves efficient computation offloading with reinforcement learning. We established a system prototype, which statistically simulated many virtual clients with limited physical client devices to conduct performance evaluations, for Chorus with real devices. The evaluation results for various workload levels show that Chorus achieved an average of <inline-formula><tex-math>$1.4\\\\times$</tex-math></inline-formula>, <inline-formula><tex-math>$1.3\\\\times$</tex-math></inline-formula>, and <inline-formula><tex-math>$2\\\\times$</tex-math></inline-formula> speedup over client-only inference, and server-only inference with LRU and MLSH, respectively.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"36 12\",\"pages\":\"2706-2723\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11197920/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11197920/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Chorus: Robust Multitasking Local Client-Server Collaborative Inference With Wi-Fi 6 for AIoT Against Stochastic Congestion Delay
The rapid growth of AIoT devices brings huge demands for DNNs deployed on resource-constrained devices. However, the intensive computation and high memory footprint of DNN inference make it difficult for the AIoT devices to execute the inference tasks efficiently. In many widely deployed AIoT use cases, multiple local AIoT devices launch DNN inference tasks randomly. Although local collaborative inference has been proposed to accelerate DNN inference on local devices with limited resources, multitasking local collaborative inference, which is common in AIoT scenarios, has not been fully studied in previous works. We consider multitasking local client-server collaborative inference (MLCCI), which achieves efficient DNN inference by offloading the inference tasks from multiple AIoT devices to a more powerful local server with parallel pipelined execution streams through Wi-Fi 6. Our optimization goal is to minimize the mean end-to-end latency of MLCCI. Based on the experiment results, we identify three key challenges: high communication costs, high model initialization latency, and congestion delay brought by task interference. We analyze congestion delay in MLCCI and its stochastic fluctuations with queuing theory and propose Chorus, a high-performance adaptive MLCCI framework for AIoT devices, to minimize the mean end-to-end latency of MLCCI against stochastic congestion delay. Chorus generates communication-efficient model partitions with heuristic search, uses a prefetch-enabled two-level LRU cache to accelerate model initialization on the server, reduces congestion delay and its short-term fluctuations with execution stream allocation based on the cross-entropy method, and finally achieves efficient computation offloading with reinforcement learning. We established a system prototype, which statistically simulated many virtual clients with limited physical client devices to conduct performance evaluations, for Chorus with real devices. The evaluation results for various workload levels show that Chorus achieved an average of $1.4\times$, $1.3\times$, and $2\times$ speedup over client-only inference, and server-only inference with LRU and MLSH, respectively.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.