边很重要:时间网络的图时间序列表示分析

IF 7.9 2区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Hongjie Chen;Ryan A. Rossi;Nesreen K. Ahmed;Namyong Park;Yu Wang;Tyler Derr;Hoda Eldardiry
{"title":"边很重要:时间网络的图时间序列表示分析","authors":"Hongjie Chen;Ryan A. Rossi;Nesreen K. Ahmed;Namyong Park;Yu Wang;Tyler Derr;Hoda Eldardiry","doi":"10.1109/TNSE.2025.3577402","DOIUrl":null,"url":null,"abstract":"Representations of temporal networks arising from a stream of edges lie at the heart of models learned on it and its performance on downstream applications. Previous modeling work has mainly represented a stream of timestamped edges using a time-series of graphs based on a specific time-scale <inline-formula><tex-math>$\\tau$</tex-math></inline-formula> (e.g., 1 mo). In contrast, it has recently been shown that constructing a time-series of graphs where each graph maintains a fixed <inline-formula><tex-math>$\\epsilon$</tex-math></inline-formula> number of edges, namely <inline-formula><tex-math>$\\epsilon$</tex-math></inline-formula>-graph time-series, leads to better performance on downstream applications, but there has yet to be a detailed investigation on why <inline-formula><tex-math>$\\epsilon$</tex-math></inline-formula>-graphs outperform <inline-formula><tex-math>$\\tau$</tex-math></inline-formula>-graphs. In this work, we design extensive experiments on a benchmark of over 25 temporal network datasets, investigating the impact of edge randomization and the various representations on graph statistics. Our results indicate that the <inline-formula><tex-math>$\\epsilon$</tex-math></inline-formula>-graph time-series representation effectively captures the structural properties of the graphs across time whereas the commonly used <inline-formula><tex-math>$\\tau$</tex-math></inline-formula>-graph time-series mostly captures the frequency of edges. This motivates the need for a paradigm shift to developing temporal network representation learning frameworks built upon <inline-formula><tex-math>$\\epsilon$</tex-math></inline-formula>-graph time-series. To help pave the way, we release a benchmark for the evaluation and development of better models.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 6","pages":"4863-4875"},"PeriodicalIF":7.9000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edges Matter: An Analysis of Graph Time-Series Representations for Temporal Networks\",\"authors\":\"Hongjie Chen;Ryan A. Rossi;Nesreen K. Ahmed;Namyong Park;Yu Wang;Tyler Derr;Hoda Eldardiry\",\"doi\":\"10.1109/TNSE.2025.3577402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Representations of temporal networks arising from a stream of edges lie at the heart of models learned on it and its performance on downstream applications. Previous modeling work has mainly represented a stream of timestamped edges using a time-series of graphs based on a specific time-scale <inline-formula><tex-math>$\\\\tau$</tex-math></inline-formula> (e.g., 1 mo). In contrast, it has recently been shown that constructing a time-series of graphs where each graph maintains a fixed <inline-formula><tex-math>$\\\\epsilon$</tex-math></inline-formula> number of edges, namely <inline-formula><tex-math>$\\\\epsilon$</tex-math></inline-formula>-graph time-series, leads to better performance on downstream applications, but there has yet to be a detailed investigation on why <inline-formula><tex-math>$\\\\epsilon$</tex-math></inline-formula>-graphs outperform <inline-formula><tex-math>$\\\\tau$</tex-math></inline-formula>-graphs. In this work, we design extensive experiments on a benchmark of over 25 temporal network datasets, investigating the impact of edge randomization and the various representations on graph statistics. Our results indicate that the <inline-formula><tex-math>$\\\\epsilon$</tex-math></inline-formula>-graph time-series representation effectively captures the structural properties of the graphs across time whereas the commonly used <inline-formula><tex-math>$\\\\tau$</tex-math></inline-formula>-graph time-series mostly captures the frequency of edges. This motivates the need for a paradigm shift to developing temporal network representation learning frameworks built upon <inline-formula><tex-math>$\\\\epsilon$</tex-math></inline-formula>-graph time-series. To help pave the way, we release a benchmark for the evaluation and development of better models.\",\"PeriodicalId\":54229,\"journal\":{\"name\":\"IEEE Transactions on Network Science and Engineering\",\"volume\":\"12 6\",\"pages\":\"4863-4875\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11029199/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11029199/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由边缘流产生的时间网络的表示是在其上学习的模型及其在下游应用程序中的性能的核心。以前的建模工作主要是使用基于特定时间尺度$\tau$(例如1个月)的时间序列图来表示带有时间戳的边缘流。相反,最近有研究表明,构建一个时间序列图,其中每个图保持固定的$\epsilon$条边数,即$\epsilon$ -图时间序列,可以在下游应用程序上获得更好的性能,但对于为什么$\epsilon$ -图优于$\tau$ -图,还没有详细的调查。在这项工作中,我们在超过25个时间网络数据集的基准上设计了广泛的实验,研究了边缘随机化和各种表示对图统计的影响。我们的研究结果表明,$\epsilon$ -graph时间序列表示有效地捕获了图在时间上的结构属性,而常用的$\tau$ -graph时间序列主要捕获了边缘的频率。这激发了范式转换的需求,即开发基于$\epsilon$ -graph时间序列的时态网络表示学习框架。为了帮助铺平道路,我们发布了一个评估和开发更好模型的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edges Matter: An Analysis of Graph Time-Series Representations for Temporal Networks
Representations of temporal networks arising from a stream of edges lie at the heart of models learned on it and its performance on downstream applications. Previous modeling work has mainly represented a stream of timestamped edges using a time-series of graphs based on a specific time-scale $\tau$ (e.g., 1 mo). In contrast, it has recently been shown that constructing a time-series of graphs where each graph maintains a fixed $\epsilon$ number of edges, namely $\epsilon$-graph time-series, leads to better performance on downstream applications, but there has yet to be a detailed investigation on why $\epsilon$-graphs outperform $\tau$-graphs. In this work, we design extensive experiments on a benchmark of over 25 temporal network datasets, investigating the impact of edge randomization and the various representations on graph statistics. Our results indicate that the $\epsilon$-graph time-series representation effectively captures the structural properties of the graphs across time whereas the commonly used $\tau$-graph time-series mostly captures the frequency of edges. This motivates the need for a paradigm shift to developing temporal network representation learning frameworks built upon $\epsilon$-graph time-series. To help pave the way, we release a benchmark for the evaluation and development of better models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Network Science and Engineering
IEEE Transactions on Network Science and Engineering Engineering-Control and Systems Engineering
CiteScore
12.60
自引率
9.10%
发文量
393
期刊介绍: The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信