{"title":"广义布尔函数的构造与等价。","authors":"Ayça Çeşmelioğlu, Wilfried Meidl","doi":"10.1007/s12095-025-00805-7","DOIUrl":null,"url":null,"abstract":"<p><p>Recently in Çeşmelioğlu, Meidl (<i>Adv. Math. Commun.,</i> <i>18</i>, 2024), the study of EA-equivalence and CCZ-equivalence for functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>)</mo></mrow> </msubsup> </math> to the cyclic group <math><msub><mi>Z</mi> <msup><mi>p</mi> <mi>k</mi></msup> </msub> </math> has been initiated, where <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>)</mo></mrow> </msubsup> </math> denotes an <i>n</i>-dimensional vector space over <math><msub><mi>F</mi> <mi>p</mi></msub> </math> . Amongst others it has been shown that there exist functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mn>2</mn> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <mn>4</mn></msub> </math> which are CCZ-equivalent but not EA-equivalent. We extend these results to larger classes of functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <msup><mi>p</mi> <mi>k</mi></msup> </msub> </math> . We then discuss constructions of generalized bent functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <msup><mi>p</mi> <mi>k</mi></msup> </msub> </math> , <i>p</i> odd or <math><mrow><mi>p</mi> <mo>=</mo> <mn>2</mn></mrow> </math> and <i>n</i> is even, which correspond to large affine spaces of bent functions. In particular we employ versions of the direct sum, the semi-direct sum and of a recent secondary bent function construction in Wang et. al., (<i>IEEE Trans. Inform. Theory</i> <i>69</i>, 2023), to generate large affine spaces of bent functions. Finally we present a solution for constructing generalized bent functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mn>2</mn> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <msup><mn>2</mn> <mi>k</mi></msup> </msub> </math> , <i>n</i> odd, from arbitrary generalized bent functions from <math><msubsup><mi>V</mi> <mrow><mi>n</mi> <mo>-</mo> <mn>1</mn></mrow> <mrow><mo>(</mo> <mn>2</mn> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <msup><mn>2</mn> <mrow><mi>k</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> </msub> </math> .</p>","PeriodicalId":48936,"journal":{"name":"Cryptography and Communications-Discrete-Structures Boolean Functions and Sequences","volume":"17 6","pages":"1659-1682"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12537615/pdf/","citationCount":"0","resultStr":"{\"title\":\"Construction and equivalence for generalized boolean functions.\",\"authors\":\"Ayça Çeşmelioğlu, Wilfried Meidl\",\"doi\":\"10.1007/s12095-025-00805-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently in Çeşmelioğlu, Meidl (<i>Adv. Math. Commun.,</i> <i>18</i>, 2024), the study of EA-equivalence and CCZ-equivalence for functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>)</mo></mrow> </msubsup> </math> to the cyclic group <math><msub><mi>Z</mi> <msup><mi>p</mi> <mi>k</mi></msup> </msub> </math> has been initiated, where <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>)</mo></mrow> </msubsup> </math> denotes an <i>n</i>-dimensional vector space over <math><msub><mi>F</mi> <mi>p</mi></msub> </math> . Amongst others it has been shown that there exist functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mn>2</mn> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <mn>4</mn></msub> </math> which are CCZ-equivalent but not EA-equivalent. We extend these results to larger classes of functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <msup><mi>p</mi> <mi>k</mi></msup> </msub> </math> . We then discuss constructions of generalized bent functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <msup><mi>p</mi> <mi>k</mi></msup> </msub> </math> , <i>p</i> odd or <math><mrow><mi>p</mi> <mo>=</mo> <mn>2</mn></mrow> </math> and <i>n</i> is even, which correspond to large affine spaces of bent functions. In particular we employ versions of the direct sum, the semi-direct sum and of a recent secondary bent function construction in Wang et. al., (<i>IEEE Trans. Inform. Theory</i> <i>69</i>, 2023), to generate large affine spaces of bent functions. Finally we present a solution for constructing generalized bent functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mn>2</mn> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <msup><mn>2</mn> <mi>k</mi></msup> </msub> </math> , <i>n</i> odd, from arbitrary generalized bent functions from <math><msubsup><mi>V</mi> <mrow><mi>n</mi> <mo>-</mo> <mn>1</mn></mrow> <mrow><mo>(</mo> <mn>2</mn> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <msup><mn>2</mn> <mrow><mi>k</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> </msub> </math> .</p>\",\"PeriodicalId\":48936,\"journal\":{\"name\":\"Cryptography and Communications-Discrete-Structures Boolean Functions and Sequences\",\"volume\":\"17 6\",\"pages\":\"1659-1682\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12537615/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications-Discrete-Structures Boolean Functions and Sequences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-025-00805-7\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications-Discrete-Structures Boolean Functions and Sequences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12095-025-00805-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
最近在Çeşmelioğlu, Meidl (Adv. Math)。Commun。, 18, 2024),开始了从V n (p)到循环群Z p k的函数ea -等价和ccz -等价的研究,其中V n (p)表示F p上的n维向量空间。其中,已经证明存在从vn(2)到z4的函数是ccz等效的,但不是ea等效的。我们将这些结果推广到更大的函数类,从vn (p)到zkp。然后讨论了从V n (p)到Z p k, p奇数或p = 2和n为偶的广义弯曲函数的构造,它们对应于弯曲函数的大仿射空间。特别地,我们采用了直接和、半直接和和的版本,以及最近在Wang等人(IEEE Trans.)中的二次弯曲函数构造的版本。通知。理论69,2023),以产生弯曲函数的大仿射空间。最后给出了从vn - 1(2)到z2k - 1的任意广义弯曲函数构造从vn(2)到z2k - 1的广义弯曲函数的解。
Construction and equivalence for generalized boolean functions.
Recently in Çeşmelioğlu, Meidl (Adv. Math. Commun.,18, 2024), the study of EA-equivalence and CCZ-equivalence for functions from to the cyclic group has been initiated, where denotes an n-dimensional vector space over . Amongst others it has been shown that there exist functions from to which are CCZ-equivalent but not EA-equivalent. We extend these results to larger classes of functions from to . We then discuss constructions of generalized bent functions from to , p odd or and n is even, which correspond to large affine spaces of bent functions. In particular we employ versions of the direct sum, the semi-direct sum and of a recent secondary bent function construction in Wang et. al., (IEEE Trans. Inform. Theory69, 2023), to generate large affine spaces of bent functions. Finally we present a solution for constructing generalized bent functions from to , n odd, from arbitrary generalized bent functions from to .
期刊介绍:
The scope of the journal focuses on discrete structures used in stream and block ciphers in symmetric cryptography; code division multiple access in communications; and random number generation for statistics, cryptography and numerical methods. In particular, papers covering Boolean functions and sequences, without excluding any other discrete structure used in cryptography and communications, such as finite fields and other algebraic structures, are strongly encouraged.