铂纳米酶系统可调酶活性按需供应治疗感染的伤口。

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Danyang Wang, Jinyao Sun, Shujing Deng, Ying Zhang, Qichao Tan, Kai Dong, Jianfeng Xing, Cuiyu You
{"title":"铂纳米酶系统可调酶活性按需供应治疗感染的伤口。","authors":"Danyang Wang, Jinyao Sun, Shujing Deng, Ying Zhang, Qichao Tan, Kai Dong, Jianfeng Xing, Cuiyu You","doi":"10.1016/j.jcis.2025.139299","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid healing of bacterially infected wounds remains a major clinical challenge. The pathological microenvironment-characterized by bacterial infection, reactive oxygen species (ROS) accumulation, persistent inflammation, and impaired tissue repair-severely impedes this process. In this work, we constructed a photothermally triggered, microenvironmental pH-regulating platinum nanozyme system, ACC@LPDA<sub>Pt</sub> nanoparticles (NPs), leveraging the pH-dependent peroxidase-like and catalase-like activities of platinum nanozymes. This system achieves enzyme-like activity conversion by modulating the wound pH, thereby accomplishing bactericidal effects, ROS scavenging, anti-inflammation, and promoting wound healing. Our study demonstrates that ACC@LPDA<sub>Pt</sub> NPs exhibit a pronounced photothermal effect and the ability to modulate the microenvironmental pH. Moreover, their excellent hemocompatibility and cytocompatibility promote cell proliferation and migration. In the inflammatory microenvironment, ACC@LPDA<sub>Pt</sub> achieved inhibition rates of 99.8 ± 0.1 % for Staphylococcus aureus (S. aureus) and 99.9 ± 0.1 % for Escherichia coli. Furthermore, the photothermal-induced dissolution of amorphous calcium carbonate (ACC) raises the microenvironmental pH to neutral, endowing ACC@LPDA<sub>Pt</sub> with robust ROS scavenging and oxygen production capabilities. This process promotes wound healing by reducing inflammation, stimulating cell proliferation and migration, granulation tissue formation, collagen deposition, and neovascularization, thereby significantly accelerating the healing of S. aureus-infected wounds with a closure rate of 97.3 ± 1.2 %. These multifunctional properties make ACC@LPDA<sub>Pt</sub> NPs a promising nano-therapeutic strategy for bacterial-infected wounds.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"703 Pt 2","pages":"139299"},"PeriodicalIF":9.7000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Platinum nanozymes system with tunable enzyme activity for on-demand supply therapy of infected wounds.\",\"authors\":\"Danyang Wang, Jinyao Sun, Shujing Deng, Ying Zhang, Qichao Tan, Kai Dong, Jianfeng Xing, Cuiyu You\",\"doi\":\"10.1016/j.jcis.2025.139299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid healing of bacterially infected wounds remains a major clinical challenge. The pathological microenvironment-characterized by bacterial infection, reactive oxygen species (ROS) accumulation, persistent inflammation, and impaired tissue repair-severely impedes this process. In this work, we constructed a photothermally triggered, microenvironmental pH-regulating platinum nanozyme system, ACC@LPDA<sub>Pt</sub> nanoparticles (NPs), leveraging the pH-dependent peroxidase-like and catalase-like activities of platinum nanozymes. This system achieves enzyme-like activity conversion by modulating the wound pH, thereby accomplishing bactericidal effects, ROS scavenging, anti-inflammation, and promoting wound healing. Our study demonstrates that ACC@LPDA<sub>Pt</sub> NPs exhibit a pronounced photothermal effect and the ability to modulate the microenvironmental pH. Moreover, their excellent hemocompatibility and cytocompatibility promote cell proliferation and migration. In the inflammatory microenvironment, ACC@LPDA<sub>Pt</sub> achieved inhibition rates of 99.8 ± 0.1 % for Staphylococcus aureus (S. aureus) and 99.9 ± 0.1 % for Escherichia coli. Furthermore, the photothermal-induced dissolution of amorphous calcium carbonate (ACC) raises the microenvironmental pH to neutral, endowing ACC@LPDA<sub>Pt</sub> with robust ROS scavenging and oxygen production capabilities. This process promotes wound healing by reducing inflammation, stimulating cell proliferation and migration, granulation tissue formation, collagen deposition, and neovascularization, thereby significantly accelerating the healing of S. aureus-infected wounds with a closure rate of 97.3 ± 1.2 %. These multifunctional properties make ACC@LPDA<sub>Pt</sub> NPs a promising nano-therapeutic strategy for bacterial-infected wounds.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"703 Pt 2\",\"pages\":\"139299\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2025.139299\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.139299","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

细菌感染伤口的快速愈合仍然是一个主要的临床挑战。病理性微环境——以细菌感染、活性氧(ROS)积累、持续炎症和组织修复受损为特征——严重阻碍了这一过程。在这项工作中,我们构建了一个光热触发的微环境ph调节铂纳米酶系统,ACC@LPDAPt纳米粒子(NPs),利用铂纳米酶的ph依赖性过氧化物酶和过氧化氢酶样活性。该系统通过调节创面pH值实现酶样活性转化,从而达到杀菌、清除ROS、抗炎、促进创面愈合的作用。我们的研究表明,ACC@LPDAPt NPs具有明显的光热效应和调节微环境ph的能力。此外,其优异的血液相容性和细胞相容性促进细胞增殖和迁移。在炎症微环境中,ACC@LPDAPt对金黄色葡萄球菌(S. aureus)和大肠杆菌的抑制率分别为99.8±0.1%和99.9±0.1%。此外,光热诱导的无定形碳酸钙(ACC)溶解将微环境pH值提高到中性,赋予ACC@LPDAPt强大的ROS清除和氧气生产能力。这一过程通过减少炎症、刺激细胞增殖和迁移、肉芽组织形成、胶原沉积和新生血管来促进伤口愈合,从而显著加速金黄色葡萄球菌感染伤口的愈合,愈合率为97.3%±1.2%。这些多功能特性使ACC@LPDAPt NPs成为细菌感染伤口的一种很有前途的纳米治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Platinum nanozymes system with tunable enzyme activity for on-demand supply therapy of infected wounds.

The rapid healing of bacterially infected wounds remains a major clinical challenge. The pathological microenvironment-characterized by bacterial infection, reactive oxygen species (ROS) accumulation, persistent inflammation, and impaired tissue repair-severely impedes this process. In this work, we constructed a photothermally triggered, microenvironmental pH-regulating platinum nanozyme system, ACC@LPDAPt nanoparticles (NPs), leveraging the pH-dependent peroxidase-like and catalase-like activities of platinum nanozymes. This system achieves enzyme-like activity conversion by modulating the wound pH, thereby accomplishing bactericidal effects, ROS scavenging, anti-inflammation, and promoting wound healing. Our study demonstrates that ACC@LPDAPt NPs exhibit a pronounced photothermal effect and the ability to modulate the microenvironmental pH. Moreover, their excellent hemocompatibility and cytocompatibility promote cell proliferation and migration. In the inflammatory microenvironment, ACC@LPDAPt achieved inhibition rates of 99.8 ± 0.1 % for Staphylococcus aureus (S. aureus) and 99.9 ± 0.1 % for Escherichia coli. Furthermore, the photothermal-induced dissolution of amorphous calcium carbonate (ACC) raises the microenvironmental pH to neutral, endowing ACC@LPDAPt with robust ROS scavenging and oxygen production capabilities. This process promotes wound healing by reducing inflammation, stimulating cell proliferation and migration, granulation tissue formation, collagen deposition, and neovascularization, thereby significantly accelerating the healing of S. aureus-infected wounds with a closure rate of 97.3 ± 1.2 %. These multifunctional properties make ACC@LPDAPt NPs a promising nano-therapeutic strategy for bacterial-infected wounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信